Math, asked by simialshaikh, 8 months ago

Raju borrowed Rs 6,500 from Rohan at the rate of
10% S.I. He returned it after 2 years. What was the
amount returned?​

Answers

Answered by poonamgarg68
3

Step-by-step explanation:

so,

P= Rs6,500

R= 10%

T=2years

S.I.=P×R×T\100

= Rs6,500×10%×2/100

= Rs1,300

A= S.I.+ P

= Rs1,300 + Rs6,500

= Rs7,800

is my answer is useful for you Mark me as brilliant s

Answered by Anonymous
13

☆ To Find :

The Amount returned after 2 years.

☆ We Know :

Amount Formula :

\implies \purple{\sf{\underline{\boxed{A = P\left(1 + \dfrac{R}{100}\right)^{n}}}}}

➝ Where ,

  • A = Amount
  • P = Principal
  • R = Rate of Interest
  • 0n = time period

Interest :

\purple{\sf{\underline{\boxed{I = \dfrac{P \times R \times t}{100}}}}}

➝ Where ,

  • SI = Simple Interest
  • P = Principal
  • R = Rate of Interest
  • t = time period

☆ Solution :

Given :

  • Principal = 6500

  • Rate of interest = 10 % p.a,

  • Time = 2 years

Using the formula and putting the value in it , we get :

\purple{\sf{A = P\left(1 + \dfrac{R}{100}\right)^{n}}} \\ \\ \\ \\ \:\:\:\:\:\:\implies \sf{A = 6500\left(1 + \dfrac{10}{100}\right)^{2}} \\ \\ \\ \\ \:\:\:\:\:\:\implies \sf{A = 6500\left(\dfrac{100 + 10}{100}\right)^{2}} \\ \\ \\ \\ \:\:\:\:\:\:\implies \sf{A = 6500 \times \dfrac{10}{100} \times \dfrac{10}{100}} \\ \\ \\ \\ \:\:\:\:\:\:\implies \sf{A = 65 \times \dfrac{10}{100} \times 10}  \\ \\ \\ \\ \:\:\:\:\:\:\implies \sf{A = 65 \times 11 \times 11} \\ \\  \\ \\ \:\:\:\:\:\:\implies \sf{A = 65 \times 121} \\ \\ \\ \\ \implies \sf{A = 7865}

Hence , the amount after 2 years is ₹ 7865.

☆ Alternative Method :

Principal for first year = ₹ 6500

Interest for the first year = \sf{I = \dfrac{P \times R \times t}{100}}

Putting the value in the formula, we get :

\implies \sf{I = \dfrac{6500 \times 10 \times 1}{100}} \\ \\  \implies \sf{I = \dfrac{650\not{0} \times 1\not{0} \times 1}{1\not{0}\not{0}}} \\ \\ \implies \sf{I = 650} \\ \\ \therefore \purple{I = 650}

Amount at the end of Year = Principal + Interest

\implies \sf{A = 6500 + 650}

\implies \sf{A = 7150}

Hence , the amount at the end of first year is ₹ 7150.

Principal for Second year = ₹ 7150

Interest for the first year = \sf{I = \dfrac{P \times R \times t}{100}}

Putting the value in the formula, we get :

\implies \sf{I = \dfrac{7150 \times 10 \times 1}{100}} \\ \\ \implies \sf{I = \dfrac{715\not{0} \times 1\not{0} \times 1}{1\not{0}\not{0}}} \\ \\ \implies \sf{I = 715} \\ \\ \therefore \purple{I = 715}

Amount at the end of Year = Principal + Interest

\implies \sf{A = 7150 + 715}

\implies \sf{A = 7865}

Hence , the amount at the end of first year is ₹ 7865.

Thus , the amount returned is ₹ 7865.

☆ Additional information :

  • Simple Interest = \sf{SI = \dfrac{P \times R \times t}{100}}

  • Principal = \sf{P = \dfrac{100 \times SI}{R \times t}}

  • Rate = \sf{R = \dfrac{100 \times SI}{P \times t}}

  • Time = Principal = \sf{t = \dfrac{100 \times SI}{R \times P}}
Similar questions