Ramamajun biography 100 words
Answers
Step-by-step explanation:
Ramanujan was an Indian mathematician who lived during the British Rule in India. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable. Ramanujan initially developed his own mathematical research in isolation: according to Hans Eysenck: "He tried to interest the leading professional mathematicians in his work, but failed for the most part. What he had to show them was too novel, too unfamiliar, and additionally presented in unusual ways; they could not be bothered".[4] Seeking mathematicians who could better understand his work, in 1913 he began a postal correspondence with the English mathematician G. H. Hardy at the University of Cambridge, England. Recognising Ramanujan's work as extraordinary, Hardy arranged for him to travel to Cambridge. In his notes, Hardy commented that Ramanujan had produced groundbreaking new theorems, including some that "defeated me completely; I had never seen anything in the least like them before and some recently proven but highly advanced results.During his short life, Ramanujan independently compiled nearly 3,900 results (mostly identities and equations). The number 1729 is known as the Hardy–Ramanujan number after a famous visit by Hardy to see Ramanujan at a hospital.Ramanujan was plagued by health problems throughout his life. His health worsened in England; possibly he was also less resilient due to the difficulty of keeping to the strict dietary requirements of his religion there and because of wartime rationing in 1914–18. He was diagnosed with tuberculosis and a severe vitamin deficiency, and confined to a sanatorium. In 1919 he returned to Kumbakonam, Madras Presidency, and in 1920 he died at the age of 32. After his death his brother Tirunarayanan compiled Ramanujan's remaining handwritten notes, consisting of formulae on singular moduli, hypergeometric series and continued fractions.