Math, asked by anshtiwariat108, 11 months ago

Ramesh has a recurring deposit account in a bank for 3 year at 8% interest per annum if he gets Rs 5328 as interest time of maturity find the monthly deposit and maturity value.​

Answers

Answered by Anonymous
114

AnswEr :

  • Ramesh Put the Money in Recurring Deposit Account. Amount is Compounded on Quarterly Basis in this.
  • So, we will Reduce Rate by 4 times, and Increase Time by 4 times.

\bold{Given} \begin{cases}\sf{Compound \:Interest=Rs. \:5328} \\ \sf{Rate=8 \times\frac{1}{4} = 2\%}\\ \sf{Time=3 \times 4 = 12}\end{cases}

T O F I N D :

  • Find the Monthly Deposit.
  • Amount after Maturity.

\rule{300}{1}

Let the Principal be P, then Amount will be

⇒ Amount = Principal + CI

Amount = (P + 5328)

Amount of Compound Interest is :

\longrightarrow\tt{Amount = P \times \bigg(1 + \dfrac{r}{100} \bigg)^{t}}\\ \\\longrightarrow\tt{(5328 + P) = P \times \bigg(1 +  \cancel\dfrac{2}{100} \bigg)^{12}} \\ \\\longrightarrow\tt{(5328 + P) = P \times \bigg(1 + \dfrac{1}{50} \bigg)^{12}} \\ \\\longrightarrow\tt{(5328 + P) = P \times \bigg(\dfrac{51}{50} \bigg)^{12}} \\ \\\longrightarrow\tt{(5328 + P) = P \times (1.02)^{12}} \\ \\\longrightarrow\tt{(5328 + P) = P \times 1.26} \\ \\\longrightarrow\tt{5328 = 1.26P - P} \\ \\\longrightarrow\tt{5328 =0.26P} \\ \\ \longrightarrow\tt{ \cancel \dfrac{5328}{0.26} =P} \\ \\\longrightarrow \large\boxed{\tt{P = Rs. \: 20493}}

\rule{300}{2}

M O N T H L Y D E P O S I T :

\implies \tt Monthly \:Deposit =  \dfrac{Principal}{Time} \\ \\\implies \tt Monthly \:Deposit = \dfrac{20493}{12} \\ \\ \implies \blue{\tt Monthly \:Deposit =Rs. \:1707}

Monthly Deposit will be Rs. 1707

\rule{300}{1}

M A T U R I T Y A M O U N T :

\implies \tt Amount = Principal + CI \\ \\\implies \tt Amount = Rs.(20493 + 5328) \\ \\\implies \blue{\tt Amount = Rs. \:25821}

Maturity Value will be Rs. 25821

◗ NOTE : All Above are Approx Values.

#answerwithquality #BAL

Answered by EliteSoul
21

Answer:

\huge\star{\underline{\mathfrak{Answer\::}}}

Hints:-

• We will have to reduce the rate of interest by 4 times and increase the time by 4 times as it will be calculated quarterly.

\textbf{\underline{Given\::}}

• Compound Interest (CI) = 5328

• Rate of interest ( r) = 8 × 1/4 = 2%

• Time ( n)= 3 years × 4 = 12 years

\textbf{\underline{To\:Find\::}}

• Monthly Deposit.

• Maturity Value of amount

\textbf{\underline{\underline{Solution\::}}}

Maturity Value =Principal + Interest

★Maturity value = (P + 5328)

\rule{300}{2}

Amount= P ( 1+ r) ^ n

Or, (5328 + P) = P (1+2%)^ 12

Or, (5328 + P) = P (1.02)^12

Or, (5328 + P) = 1.26P

Or, P - 1.26P= 5328

Or, 0.26P= 5328

P = 5328/0.26

★P = 20492.31★

\rule{300}{2}

Monthly Deposit= Principal/time

Monthly Deposit = 20492.31/12

★ Monthly deposit=1707.69

\rule{300}{2}

Maturity Value = P + 5328

Maturity value = 20492.31+ 5328

★Maturity value=25820.31

Hope it helps you ♥ ♥ ♥

Similar questions