Math, asked by Inna1455, 1 year ago

Random variable with finite expectation and unbounded variance

Answers

Answered by okaps
7
Example of Random variable with finite expectation

∑∞k=11k3=ζ(3)∑k=1∞1k3=ζ(3)

This means ∑∞k=11ζ(3)k3=1∑k=1∞1ζ(3)k3=1 would be a great probability distribution.

Let P(X=k)=1ζ(3)k3P(X=k)=1ζ(3)k3 on k=1,2,…k=1,2,…

Now E[X]=∑∞k=1kP(X=k)=∑∞k=11ζ(3)k2=ζ(2)ζ(3)<∞E[X]=∑k=1∞kP(X=k)=∑k=1∞1ζ(3)k2=ζ(2)ζ(3)<∞

But E[X2]=∑∞k=1k2P(X=k)=∑∞k=11ζ(3)kE[X2]=∑k=1∞k2P(X=k)=∑k=1∞1ζ(3)k diverges

And thus, the variance of XX is infinite

Answered by mzlenecl74
1

Answer:  Random variable with finite expectation and unbounded variance.


Step-by-step explanation:


Similar questions