Math, asked by amninder7668, 6 months ago

range of f(x)=1/1-2cosx is​

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow f(x)=\dfrac{1}{1-2\cos x}

We need to find its range.

Let,

\longrightarrow y=\dfrac{1}{1-2\cos x}

\longrightarrow y-2y\cos x=1

\longrightarrow 2y\cos x=y-1

\longrightarrow \cos x=\dfrac{y-1}{2y}\quad\quad\dots(1)

We know that,

\longrightarrow\cos x\in[-1,\ 1]

So from (1),

\longrightarrow\dfrac{y-1}{2y}\in[-1,\ 1]

\longrightarrow1-\dfrac{1}{y}\in[-2,\ 2]

Subtracting 1,

\longrightarrow-\dfrac{1}{y}\in[-3,\ 1]

Multiplying by -1, (note the interval limit change)

\longrightarrow\dfrac{1}{y}\in[-1,\ 3]

or,

\longrightarrow\dfrac{1}{y}\in[-1,\ 0]\cup[0,\ 3]

Taking reciprocal, (note the interval limit change)

\longrightarrow y\in\bigg(\dfrac{1}{0},\ \dfrac{1}{-1}\bigg]\cup\left[\dfrac{1}{3},\ \dfrac{1}{0}\right)

That is,

\longrightarrow y\in\bigg(-\infty,\ -1\bigg]\cup\left[\dfrac{1}{3},\ \infty\right)

Hence range of our function is,

\longrightarrow\underline{\underline{f(x)\in\bigg(-\infty,\ -1\bigg]\cup\left[\dfrac{1}{3},\ \infty\right)}}

Answered by Nitin972e
0

Answer:

Given, f(x)=11−2cosx

We know that, −1≤cosx≤1

⇒−2≤2cosx≤2

⇒−2≤−2cosx≤2

⇒1−2≤1−2cosx≤2+1

⇒−1≤1−2cosx≤3

So, range is [-1,3]

Similar questions