Range of the function f(x) =
(3sinx+cosx - 2)/
(3sinx + 4cosx +10)
Pls help me fast
I will mark branliest
Answers
Answered by
0
Answer:
Solution :
f(x)=(3sinx−4cosx−10)(3sinx+4cosx−10)f(x)=(3sinx-4cosx-10)(3sinx+4cosx-10)
f(x)=[(3sinx−10)−4cosx][(3sinx−10)+4cosx]f(x)=[(3sinx-10)-4cosx][(3sinx-10)+4cosx]
f(x)=(3sinx−10)2−16cos2xf(x)=(3sinx-10)2-16cos2x
f(x)=9sin2x+100−60sinx−16(1−sin2x)f(x)=9sin2x+100-60sinx-16(1-sin2x)
f(x)=25sin2x+84−60sinxf(x)=25sin2x+84-60sinx
f(x)=(5sinx−6)2+48f(x)=(5sinx-6)2+48
at sinx=1
f(x)=(5−6)2+48=49f(x)=(5-6)2+48=49
Minimum value off(x)−−−−√=49−−√=7f(x)=49=7.
Similar questions
English,
2 months ago
India Languages,
2 months ago
Computer Science,
11 months ago
History,
11 months ago
English,
11 months ago