Math, asked by scorder96, 1 month ago

Range of the function f(x) = x² + 3 / x² + 1 is?

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{ {x}^{2}  + 3}{ {x}^{2}  + 1}

To find the range of the function,

Let assume that

\rm :\longmapsto\:y = \dfrac{ {x}^{2}  + 3}{ {x}^{2}  + 1}

\rm :\longmapsto\: {yx}^{2} + y =  {x}^{2} + 3

\rm :\longmapsto\: {yx}^{2} -  {x}^{2}  =  3 - y

\rm :\longmapsto\: {x}^{2}(y - 1) = 3 - y

\rm :\longmapsto\: {x}^{2} = \dfrac{3 - y}{y - 1}

\rm :\longmapsto\:x=  \sqrt{\dfrac{3 - y}{y - 1} }

Now, x is defined when

\rm :\longmapsto\:3 - y \geqslant 0 \:  \:  \: and \:  \:  \: y - 1 > 0

\rm :\longmapsto\: - y \geqslant  - 3 \:  \:  \: and \:  \:  \: y > 1

\rm :\longmapsto\: y \leqslant  3 \:  \:  \: and \:  \:  \: y > 1

\bf\implies \:1 < y \leqslant 3

\bf\implies \:y \:  \in \: (1, \: 3]

Additional Information :-

If a and b are real numbers, such that a < b, then

\red{ \boxed{ \sf{ \:(x - a)(x - b) &lt; 0 \:  \implies \: a &lt; x &lt; b \: }}}

\red{ \boxed{ \sf{ \:(x - a)(x - b) \leqslant  0 \:  \implies \: a \leqslant x \leqslant b \: }}}

\red{ \boxed{ \sf{ \:(x - a)(x - b) &gt; 0 \:  \implies \: x &lt; a \:  \: or \:  \: x &gt; b \: }}}

\red{ \boxed{ \sf{ \:(x - a)(x - b) \geqslant  0 \:  \implies \: x \leqslant  a \:  \: or \:  \: x \geqslant b \: }}}

\red{ \boxed{ \sf{ \: \frac{x - a}{x - b} &lt; 0 \:  \implies \: a &lt; x &lt; b}}}

\red{ \boxed{ \sf{ \: \frac{x - a}{x - b}  \leqslant  0 \:  \implies \: a  \leqslant  x &lt; b}}}

\red{ \boxed{ \sf{ \: \frac{x - a}{x - b}  \geqslant  0 \:  \implies \: x  \leqslant  a \:  \:  \: or \:  \:  \: x &gt;  b}}}

Similar questions