Math, asked by badwalmannu, 2 months ago

ratinalise the denominator √2/√2+√3-5 ​

Answers

Answered by Anonymous
19

Given to Rationalize the denominator:-

  \pmb \: \cfrac{ \sqrt{2} }{ \sqrt{2} +  \sqrt{3}   - 5}

SOLUTION:-

Rationalization means We have to remove the surds /radicals in denominator by the process of Rationalization. In order to remove the surds we have to multiply and divide with its conjugate of denominator i.e  called as Rationalizing factor .

Conjugate of

  \pmb \ \sqrt{2}  +  \sqrt{3}  - 5 =  \sqrt{2}  +  \sqrt{3}  + 5

So, multiply and divide with this conjugate.

\pmb \:  \dfrac{ \sqrt{2} }{ \sqrt{2} +  \sqrt{3} - 5  }  \times  \dfrac{ \sqrt{2}+\sqrt{3}+5  }{ \sqrt{2}  +  \sqrt{3} + 5 }

\pmb \:  \dfrac{( \sqrt{2})( \sqrt{2}+\sqrt{3} +5  ) }{( \sqrt{2} +  \sqrt{3}  - 5)( \sqrt{2} +  \sqrt{3}  + 5)  }

Denominator is in form of (a+b)(a-b) = a²-b² Simplifying this

\pmb \:  \dfrac{2+\sqrt{6} +5\sqrt{2}   }{( \sqrt{2}  +  \sqrt{3}) {}^{2} - (5) {}^{2}   }

\pmb \:  \cfrac{2+\sqrt{6} +5\sqrt{2} }{( \sqrt{2}) {}^{2}  + ( \sqrt{3} ) {}^{2}  + 2( \sqrt{2})( \sqrt{3}  ) - 25 }

\pmb \:  \cfrac{2+\sqrt{6}+5\sqrt{2}   }{ 2  + 3  + 2 \sqrt{6}  - 25 }

\pmb \:  \cfrac{2+\sqrt{6}+5\sqrt{2}  }{ 5 + 2 \sqrt{6}  - 25 }

\cfrac{2+\sqrt{6} +5\sqrt{2}  }{2 \sqrt{6} - 20 }

Still the radicals are not removed So, again we have to do the Rationalization.

Rationalizing factor of

2 \sqrt{6}  - 20 \: is \: 2 \sqrt{6}  + 20

So, multiply and divide with this

\pmb \:  \cfrac{2+\sqrt{6}+5\sqrt{2}   }{2 \sqrt{6} - 20 }  \times  \cfrac{2 \sqrt{6} + 20 }{2 \sqrt{6}  + 20}

Now ,in denominator (a-b)(a+b) was formed that is a²-b^2

\pmb \:  \cfrac{(2+\sqrt{6}+5\sqrt{2}   )(2\sqrt{6} +20)}{(2 \sqrt{6} - 20)(2\sqrt{6}+20)  }

\cfrac{4\sqrt{6} +40+12+20\sqrt{6} +10\sqrt{12} +100\sqrt{2} }{(2\sqrt{6})^2-(20)^2 }

\cfrac{4\sqrt{6} +52+20\sqrt{6} +10\sqrt{12}+100\sqrt{2}  }{(24-400) }

\cfrac{4\sqrt{6} +52+20\sqrt{6} +10\sqrt{12}+100\sqrt{2}   }{(-376) }

\cfrac{2(2\sqrt{6} +26+10\sqrt{6} +5\sqrt{12}+ 50\sqrt{2} )}{(-376) }

\cfrac{(2\sqrt{6} +26+10\sqrt{6} +5\sqrt{12}+ 50\sqrt{2} )}{(-188) }

\cfrac{(-2\sqrt{6} -26+10\sqrt{6} -5\sqrt{12}- 50\sqrt{2} )}{(188) }

Since denominator rationalized!


BrainlyPhantom: Wonderful!
Similar questions