Math, asked by samnaniinaya6171, 10 months ago

Ratio of 11th and 14th term of ap is 7:9 find ration of 10th and 3th term

Answers

Answered by BrainlyConqueror0901
9

\bold{\underline{\underline{Answer:}}}

\bold{\therefore a_{10} : a_{3 } = 19 : 5}

\bold{\underline{\underline{Step-by-step\:explantion:}}}

• In the given question information given about ratio of a11 and a14 is given.

• We have to find ratio of a10 and a3.

  \underline \bold{given :} \\  \implies   a_{11} :  a_{14} = 7 : 9 \\  \\  \underline \bold{to \: find : } \\  \implies  a_{10} :  a_{3} = ?

• According to given question :

 \implies   \frac{  a_{11} }{a_{14} } =  \frac{7}{9}   \\  \\  \implies  \frac{a + 10d}{a + 13d}  =  \frac{7}{9}  \\  \\   \bold{cross \: multiply \: them : } \\  \implies 9(a + 10d) = 7(a + 13d) \\  \\  \implies 9a + 90d = 7a  + 91d \\  \\  \implies 9a - 7a = 91d - 90d \\  \\    \bold{\implies d = 2a-  -  -  - (1)}\\  \\  \bold{by \: given \: question : } \\  \implies  \frac{ a_{10} }{ a_{3} }  =  \frac{a + 9d}{a + 2d} -  -  -  -  - (2)  \\  \\  \bold{putting \: value \: of \: d \: in \: (2)} \\  \implies  \frac{a_{10}}{a_{3}} =  \frac{a + 9 \times 2a}{a + 2 \times 2a}  \\  \\  \implies \frac{a_{10}}{a_{3}} = \frac{a + 18a}{a + 4a}  \\  \\ \implies \frac{a_{10}}{a_{3}} = \frac{19 \cancel{a}}{5 \cancel{a}}  \\  \\  \bold {\therefore a_{10} : a_{3 } = 19 : 5}

Answered by Anonymous
13

ANSWER:-

Given:

 { }^{</u><u>T</u><u>} 11 \ratio  {}^{</u><u>T</u><u>} 14 = 7 \ratio 9

We know that,

nth term= Tn = a+(n-1)d.

Where,

⚫First term= a

⚫Common difference=d

Therefore,

 {}^{T} 11 = a + (11 - 1)d \\  \\  =  &gt;  {}^{T} 11 = a + 10d ...........(1)

And,

 {}^{T} 14 = a + (14 - 1)d \\  \\  =  &gt;   {}^{T} 14 = a + 13d.............(2)

From equation (1) & (2) we get;

 \frac{ {}^{T} 11}{ {}^{T}14 }  =  \frac{a + 10d}{a + 13d}  =  \frac{7}{9}   \\ [cross \: multiplication] \\  \\  =  &gt; 9a + 90d = 7a + 91d \\  \\  =  &gt; 9a - 7a = 91d - 90d \\  \\  =  &gt; 2a = d\\ \\=) d= 2a

We know that,

 {}^{S} n =  \frac{n}{2} [2a + (n - 1)d]

Now,

 \frac{ {}^{S} 10}{ {}^{S} 3}  =  \frac{ \frac{10}{2} (2a + 9d)}{ \frac{3}{2} (2a + 2d)}  \\  \\  =  &gt;  \frac{ {}^{S} 10}{ {}^{S} 3}  =  \frac{10(2a + 9d)}{3(2a + 2d)}  \\ From \: equation \: (3) \:, we \: get; \\  =  &gt;  \frac{ {}^{S} 10}{ {}^{S}3 }  =  \frac{10[2a + 9(2a)]}{3[2a + 2(2a)]}  \\  \\  =  &gt;  \frac{ {}^{S} 10}{ {}^{S} 3}  =  \frac{10(20a)}{3(6a)}  \\  \\  =  &gt;  \frac{ {}^{S} 10}{ {}^{S}3 }  =  \frac{200a}{18a}  \\   \\  =  &gt;  \frac{ {}^{S}10 }{ {}^{S}3 }  =  \frac{100}{9}

Hence,

S10: S3= 100:9

Hope it helps ☺️

Similar questions