Math, asked by hardiksir, 2 months ago

Ratio of a diagonal of a rectangle to its smaller side is 5 : 2. Find the ratio of its

longer side to the smaller side​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\textsf{Ratio of diagonal of rectangle to its smaller side is 5:2}

\textbf{To find:}

\textsf{Ratio of its longer side to the smaller side}

\textbf{Solution:}

\textsf{Let l,b and h be the length, breadth and diagonal of the given rectangle}

\textsf{As per given data,}

\mathsf{d:b=5:2}

\implies\mathsf{d=5k,\;\;b=2k}

\mathsf{But,\;d^2=l^2+b^2}

\mathsf{(5k)^2=l^2+(2k)^2}

\mathsf{25k^2=l^2+4k^2}

\mathsf{25k^2-4k^2=l^2}

\mathsf{21k^2=l^2}

\implies\mathsf{l=\sqrt{21}k}

\mathsf{Now,}

\mathsf{l:b}

\mathsf{=\sqrt{21}k:2k}

\mathsf{=\sqrt{21}:2}

\therefore\boxed{\mathsf{l:b=\sqrt{21}:2}}

Answered by AbhinavRocks10
23

Step-by-step explanation:

\textbf{Given:}:

\textsf{Ratio of diagonal of rectangle to its smaller side is 5:2}

\textbf{To find:}:

\textsf{Ratio of its longer side to the smaller side}

\textbf{Solution:}:

\textsf{Let l,b and h be the length, breadth and diagonal of the given rectangle}

\textsf{As/ per /given /data,},

\mathsf{d:b=5:2}d:b=5:2

\implies\mathbb{d=5k\;b=2k⟹d=5k,b=2k

\mathsf{But,\;d^2=l^2+b^2}But,d 2=l2+b 2

\mathsf{(5k)^2=l^2+(2k)^2}(5k)2=l 2+(2k) 2

\mathsf{25k^2=l^2+4k^2}25k 2 =l 2+4k 2

\mathsf{25k^2-4k^2=l^2}25k 2−4k2=l 2

\mathsf{21k^2=l^2}21k 2 =l2

\implies\mathsf{l=\sqrt{21}k}⟹l=21 k

\mathsf{Now,},

\mathsf{l:b}l:b

\mathsf{=\sqrt{21}k:2k}= 21k:2k

\mathsf{=\sqrt{21}:2}= 21:2

\therefore\boxed{\mathsf{l:b=\sqrt{21}2}}∴

 l:b= 21 :2

Similar questions