Math, asked by RaheemAshiq, 11 months ago

Ratio of boys and girl is 4:5, when 100 girl left, the ratio becomes 6:7, find number of boys

1200

600

800

None of these

Answers

Answered by Sauron
10

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The number of Boys is 1200.

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

Ratio of boys to girls = 4 : 5

When 100 girls left, new ratio = 6 : 7

To find :

The number of Boys

Solution :

Consider the :

  • Boys as 4x
  • Girls as 5x

\boxed{\sf{\frac{4x}{5x - 100} =  \frac{6}{7}}}

\sf{\implies} \:\dfrac{4x}{5x - 100} =  \dfrac{6}{7}

\sf{\implies} \:{7(4x)} = 6(5x - 100)

\sf{\implies} \:{28x} = 30x - 600

\sf{\implies} \:2x = 600

\sf{\implies} \:x =  \dfrac{600}{2}

\sf{\implies} \:x = 300

\rule{300}{1.5}

Value of 4x

\sf{\implies} \:4 \times 300

\sf{\implies} \:1200

Boys = 1200

\therefore The number of Boys is 1200.

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\sf{\implies} \:\dfrac{1200}{1500 - 100} =  \dfrac{6}{7}

\sf{\implies} \:\dfrac{1200}{1400 } =  \dfrac{6}{7}

\sf{\implies} \:\dfrac{1200 \div 200}{1400 \div 200} =  \dfrac{6}{7}

\sf{\implies} \:\dfrac{6}{7} =  \dfrac{6}{7}

\therefore The number of Boys is 1200.

Answered by Stylishhh
2

Step-by-step explanation:

Let number of boys = 4N and number of girls = 5N

According to the question,

4N / (5N - 100) = 6 / 7

⇒ 28N = 6 ( 5N - 100 )

⇒ 28N = 30N - 600

⇒ 2N = 600

∴ N = 600 / 2 = 300

∴ Number of boys = 4N

= 4 x 300

= 1200

Hope it Helps !!!!

Similar questions