Math, asked by mahithavarshini891, 7 months ago

Ratio of sum of n terms of two A.P.’s is 9n + 1 : 2n + 29. Find ratio of their nth terms​

Answers

Answered by Intelligentcat
74

\Large{\boxed{\underline{\overline{\mathfrak{\star \: QuEsTiOn :- \: \star}}}}}

Ratio of sum of n terms of two AP's is 9n + 1 : 2n + 29. Find the ratio between their \sf{\bold{m_{th}}} terms.

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

Ratio of the \sf{\underline{\bold{m_{th}}}} terms of the given AP will be 18 m - 8 : 4 m + 27.

\Large{\underline{\underline{\bf{GiVen:-}}}}

Ratio of sum of n terms of two A.P.'s is 9 n + 1 : 2 n + 29

\Large{\underline{\underline{\bf{Find:-}}}}

What's the Ratio of their \sf{m_{th}} terms ?

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

Here we go !

So, we consider first term of two AP's be a₁ and a₂ and common differences be d₁ and d₂

then,

\sf{\dfrac{\dfrac{n}{2}(2a_1+(n-1)d_1)}{\dfrac{n}{2}(2a_2+(n-1)d_2)}=\dfrac{9n+1}{2n+29}}

\sf{\dfrac{2a_1+(n-1)d_1}{2a_2+(n-1)d_2}=\dfrac{9n+1}{2n+29}}

now we got after dividing 2

\implies\sf{\dfrac{a_1+\dfrac{(n-1)}{2}d_1}{a_2+\dfrac{(n-1)}{2}d_2}=\dfrac{9n+1}{2n+29}}

Hence we now find \sf{m_{th}} term

\mapsto \sf{\dfrac{n-1}{2}=m-1}

\mapsto \sf{n=2m-2+1}

\mapsto \pink{\sf{n=2m-1}}

using the , replacing values

\sf{\dfrac{a_1+(m-1)d_1}{a_2+(m-1)d_2}=\dfrac{9(2m-1)+1}{2(2m-1)+29}}

\implies\pink{\sf{\dfrac{a_1+(m-1)d_1}{a_2+(m-1)d_2}=\dfrac{18m-8}{4m+27}}}

So,

Ratio of the \sf{\underline{\bold{m_{th}}}} terms of the given AP will be 18 m - 8 : 4 m + 27.

Additional Information :-

Sum of n terms in AP ↠ n/2[2a + (n – 1)d]

Sum of natural numbers ↠ n(n+1)/2

Sum of square of ‘n’ natural numbers ↠ [n(n+1)(2n+1)]/6

Sum of Cube of ‘n’ natural numbers. ↠ [n(n+1)/2]²

Similar questions