Math, asked by agrawalmohit615, 10 months ago

ratio of surface areas of two cubes is 25:36.find the ratio of their volumnes.​

Answers

Answered by amankumaraman11
3

 \texttt{Ratio of Surface Areas of two cubes = 25:36</p><p>}

We know,

 \mathbb{FORMULAE  \:  \: FOR \:  :}

  • Surface area of cube = 6a²

Now, Taking the sides of cubes as x & y.

1)  \\ \\ \\ {6x}^{2}  = 25 \\   \:  \:  {x}^{2}  =  \frac{25}{6}  \\  \:  \:  \:  \:x =  \sqrt{ \frac{25}{6} }  =  \frac{5}{ \sqrt{6} }

2)  \\ \\ \\ {6y}^{2}  = 36 \\  \:  \:  {y}^{2}  =  \frac{36}{6}  = 6 \\  \:  \:  \:  y =  \sqrt{6}

Thus,

 \sf Required  \:  \: Ratio =  {x}^{3}  :  {y}^{3}

 \rightarrow  ( \frac{5}{ \sqrt{6} } )^{3}  :  ( \sqrt{6} )^{3}  \\  \\  \rightarrow  \frac{125}{6 \sqrt{6} }  : 6 \sqrt{6}  \\  \\  \rightarrow  \frac{ \frac{125}{6 \sqrt{6} } }{6 \sqrt{6} }  =  \frac{125}{6 \sqrt{6}(6 \sqrt{6} ) }  \\  \\   \rightarrow  \frac{125}{36 \times 6}  =  \frac{125}{216}  \\  \\  \huge \frak{ \longrightarrow \red{125 : 216}}

#BAL

Similar questions