Chemistry, asked by pbalfa, 4 months ago

Ratio of the wavenumber of the first line of Lyman
series of hydrogen atom to the first line of Balmer
series of He+ ion will be

A. 5:2
B. 9:5
C. 27:20
D. 7:5​

Answers

Answered by Mysterioushine
70

To Find :

  • The Ratio of wavenumber of the first line of Lyman series of hydrogen atom to the first line of Balmer series of He⁺ ion

Solution :

Wavenumber of a spectral line is given by ,

 \\  \star \: {\boxed{\purple{\sf{ \frac{1}{ \lambda} =RZ^2 \bigg( \dfrac{1}{ {n_1}^{2} }  -  \dfrac{1}{ {n_2}^{2} } \bigg)   }}}} \\  \\

Here ,

  • R is Rydberg's constant
  • Z is atomic number
  • n₁ and n₂ are energy levels (n₂ > n₁)

First let us calculate the wavenumber of first line of Lyman series of hydrogen atom.

  • For first line of lyman series , n₁ = 1 and n₂ = 2
  • Z = 1 {Atomic number of hydrogen atom}
  • R {Constant}

Substituting the values ;

 \\   : \implies \sf \:  \dfrac{1}{ \lambda_1}  = R \times  {1}^{2}  \bigg( \dfrac{1}{ {1}^{2}  }  -  \dfrac{1}{ {2}^{2} }  \bigg) \\  \\

 \\   : \implies \sf \:  \dfrac{1}{ \lambda_1}  = R \times 1 \bigg( \dfrac{1}{1}  -  \dfrac{1}{4}  \bigg) \\  \\

 \\   : \implies \sf \:  \dfrac{1}{ \lambda_1}  = R \bigg( \dfrac{3}{4}  \bigg) \\  \\

 \\  :\implies{\underline{\boxed{\red{\sf{\overline{\upsilon}_1=  \dfrac{3R}{4} }}}}}  \: \bigstar \\  \\

[ Since wavenumber is equal to the reciprocal of wavelength]

Now , Calculating the wavenumber of first line of Balmer series of He⁺ ion.

  • For first line of balmer series Balmer series , n₁ = 2 and n₂ = 3.
  • Atomic number of He⁺ ion = 2

Substituting the values ;

 \\   : \implies \sf \:  \dfrac{1}{ \lambda_2} =  R \times 2^2 \bigg( \dfrac{1}{ {2}^{2} }  -  \dfrac{1}{ {3}^{2} }  \bigg) \\  \\

 \\   : \implies \sf \:  \dfrac{1}{ \lambda_2}  = R \times 4 \bigg( \dfrac{1}{4}  -  \dfrac{1}{9}  \bigg) \\  \\

 \\   : \implies \sf \:  \dfrac{1}{ \lambda_2}  = 4R \bigg( \dfrac{5}{36}  \bigg) \\  \\

 \\  :\implies{\underline{\boxed{\red{\sf{\overline{\upsilon}_{2} =  \dfrac{20R}{36} }}}}}  \: \bigstar \\  \\

Now , Calculating the ratio ;

 \\  :  \implies \sf \:  \dfrac{ \overline{ \upsilon}_1}{ \overline{ \upsilon}_2}  =  \dfrac{ \frac{3R}{4} }{ \frac{20R}{36} }  \\  \\

 \\   : \implies \sf \:  \dfrac{ \overline{ \upsilon}_1}{ \overline{ \upsilon}_2}  =  \dfrac{ \frac{3}{4} }{ \frac{20}{36} }  \\  \\

 \\   : \implies \sf \:  \dfrac{ \overline{ \upsilon}_1}{ \overline{ \upsilon}_2}  =  \dfrac{ 3 \times 36}{ 20 \times 4 }  \\  \\

 \\   : \implies{\underline{\boxed{\pink{\sf{ \:  \dfrac{ \overline{ \upsilon}_1}{ \overline{ \upsilon}_2}  =  \dfrac{ 27}{ 20 }}}}}}  \: \bigstar  \\  \\

Hence ,

  • The required ratio is 27 : 20. So , Option(3) is the required answer.
Similar questions