Math, asked by vipul3471, 7 months ago

Rationailze the denominator in the following
 \frac{1}{ \sqrt{7} -  \sqrt{6}   }

Answers

Answered by Anonymous
0

 \frac{1}{ \sqrt{7} -  \sqrt{6}  }  =  \frac{1}{ \sqrt{7} -  \sqrt{6}  } \times  \frac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} }

 =  \frac{ \sqrt{7} +  \sqrt{6}  }{ \sqrt{ {7}^{2} }  - \sqrt{ {6}^{2} }  }  =  \sqrt{7}  +  \sqrt{6}

Hope it helps you

Mark as brainliest and follow me

Answered by Anonymous
2

 \bf \huge \red{Question :  - }

Rationalize the denominator!!!

1/√7-√6

 \bf \huge \red{Solution :  - }

  \bf \large\implies \:  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  \\  \\ \bf \large\implies \: \frac{1}{ \sqrt{7}  -  \sqrt{6} }  \times  \frac{ \sqrt{7} +  \sqrt{6}  }{ \sqrt{7}  +  \sqrt{6} }  \\  \\ \bf \large\implies \: \frac{ \sqrt{7} +  \sqrt{6}  }{ {( \sqrt{7} })^{2} -  {( \sqrt{6} })^{2}  }  \\  \\ \bf \large\implies \: \frac{ \sqrt{7}  +  \sqrt{6} }{7 - 6} \\  \\ \bf \large\implies \: \frac{ \sqrt{7}  +  \sqrt{6} }{1}  \\  \\ \bf \large\implies \: \sqrt{7}  +  \sqrt{6}

Similar questions