Rational ise the denominators 1/√7-√6
Answers
Answered by
0
Answer:
Given \frac{1}{\sqrt{7}- \sqrt{6}}
Multiplynumerator and denominator by(√7+√6),weget
= \frac{(\sqrt{7}+\sqrt{6})}</p><p>{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}
\*Byalgebraic identity:
(a+b)(a-b)=a²-b²
= \frac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}
= \frac{(\sqrt{7}+\sqrt{6})}{7-6}
= (\sqrt{7}+\sqrt{6})
Therefore,
\frac{1}{\sqrt{7}- \sqrt{6}}= (\sqrt{7}+\sqrt{6})
Answered by
1
Step-by-step explanation:
on rationalising the denominator
1/ √7 -√6 × √7+ √6 / √7+√6
√7+ √6 / √7 square - √6square
√7+√6/ 7-6
√7+ √6 / 1
hope this will help u
Similar questions