Math, asked by Momomaringa, 10 months ago

Rationale the denominator and simplify 2√6-5/3√5-2√6

Answers

Answered by Anonymous
66

\Huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

To Find :

We have to rationalize

\sf{\frac{ 2\sqrt{6} - 5}{3\sqrt{5} - 2\sqrt{6}}}

Solution :

We know that,

When we rationalize a number then we multiply denominator by numerator and both denominator by changing the last sign.

Now,

\rule{200}{2}

 \sf{  \implies\frac{2 \sqrt{6}  - 5}{3 \sqrt{5}  - 2 \sqrt{6} }  \times  \frac{3 \sqrt{5} + 2 \sqrt{6}  }{3 \sqrt{5} + 2 \sqrt{6}  }  } \\  \\ { \LARGE{ \leadsto{  \boxed{ \boxed{ \green{ \sf{{a}^{2} - {b}^{2}  =  (a + b)(a - b) }}}}}}}  \\  \\ \bf{\hookrightarrow {Putting \: values}}\\  \\  \sf{\implies \frac{2 \sqrt{6} - 5(3 \sqrt{5} + 2 \sqrt{6}  ) }{ {(3 \sqrt{5}) }^{2}  - (2 \sqrt{6})^{2} }  } \\  \\  \sf{\implies \frac{6 \sqrt{30} +  24  - 15 \sqrt{5} - 10 \sqrt{6}}{45 - 24}} \\  \\  \sf{\implies \frac{6 \sqrt{2 \times 3 \times 3} + 24 - 15 \sqrt{5}  - 10 \sqrt{6}  }{21} } \\  \\  \sf{\implies \frac{18 \sqrt{2 }  + 24 - 15 \sqrt{5} - 10 \sqrt{6}  }{21} }

{ \LARGE{ \leadsto{  \boxed{ \boxed{ \blue{ \sf{\frac{18 \sqrt{2 }  + 24 - 15 \sqrt{5} - 10 \sqrt{6}  }{21}}}}}}}}

Answered by lucky997761
4

&lt;body bgcolor="black"&gt;</p><p>&lt;font color="white"&gt;

=>To Find :

=>We have to rationalize

 \sf{\frac{ 2\sqrt{6} - 5}{3\sqrt{5} - 2\sqrt{6}}}

☆SolutiOn :

=>We know that,

➡When we rationalize a number then we multiply denominator by numerator and both denominator by changing the last sign.

➡Now,

 \begin{lgathered}\sf{ \implies\frac{2 \sqrt{6} - 5}{3 \sqrt{5} - 2 \sqrt{6} } \times \frac{3 \sqrt{5} + 2 \sqrt{6} }{3 \sqrt{5} + 2 \sqrt{6} } } \\ \\ { \LARGE{ \leadsto{ \boxed{ \boxed{ \green{ \sf{{a}^{2} - {b}^{2} = (a + b)(a - b) }}}}}}} \\ \\ \bf{\hookrightarrow {Putting \: values}}\\ \\ \sf{\implies \frac{2 \sqrt{6} - 5(3 \sqrt{5} + 2 \sqrt{6} ) }{ {(3 \sqrt{5}) }^{2} - (2 \sqrt{6})^{2} } } \\ \\ \sf{\implies \frac{6 \sqrt{30} + 24 - 15 \sqrt{5} - 10 \sqrt{6}}{45 - 24}} \\ \\ \sf{\implies \frac{6 \sqrt{2 \times 3 \times 3} + 24 - 15 \sqrt{5} - 10 \sqrt{6} }{21} } \\ \\ \sf{\implies \frac{18 \sqrt{2 } + 24 - 15 \sqrt{5} - 10 \sqrt{6} } {21} } \end {lgathered}

{ \LARGE{ \leadsto{ \boxed{ \boxed{ \blue{ \sf{\frac{18 \sqrt{2 } + 24 - 15 \sqrt{5} - 10 \sqrt{6} }{21}}}}}}}}⇝

Similar questions