Math, asked by Momomaringa, 1 year ago

Rationale the denominator and simplify 5+2√3/7+4√3

Answers

Answered by Hiteshbehera74
5

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  =  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3} ) }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3}) }  \\  =  \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3} - 24 }{ {(7)}^{2} -  {(4 \sqrt{3}) }^{2}  }  \\  =  \frac{11 - 6 \sqrt{3} }{49 - 48}  = 11 - 6 \sqrt{3}

Answered by Anonymous
35

\Huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

To Find :

We have to rationalize

 \sf{ \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } }

Solution :

We know that,

When we rationalize a number then we multiply denominator by numertaor and both denominator by changing the last sign.

Now,

\rule{200}{2}

 \sf{ \implies\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  }    \\  \\ { \LARGE{ \leadsto{  \boxed{ \boxed{ \green{ \sf{{a}^{2} - {b}^{2}  =  (a + b)(a - b) }}}}}}}  \\  \\ \bf{\hookrightarrow {Putting \: values}}\\  \\ \sf{ \implies\frac{5 + 2 \sqrt{3}(7 - 4 \sqrt{3})}{ {(7)}^{2} -  {( 4 \sqrt{3} )}^{2}  } } \\  \\  \sf{ \implies\frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 - 48} } \\  \\  \sf{  \implies\frac{11 - 6 \sqrt{3} }{1} }  \\  \\ { \LARGE{ \leadsto{  \boxed{ \boxed{ \blue{ \sf{11 - 6 \sqrt{3}  }}}}}}}

Similar questions
Science, 1 year ago