Math, asked by MsPerfects, 1 year ago

Rationalisation.

✨✨✨✨✨✨✨✨✨

2 - √3 / 2 + √3 = a - b√3

✨✨✨✨✨✨✨✨✨

Find value of a and b.


Thanks !☺☺☺


shivam0142: a=7 ,b =6
shivam0142: a=7 ,b=4
nishantraj42: a=7 , b=4
rishu8258: is it a profile puc

Answers

Answered by BrainlyQueen01
153
\mathbb{\large{SOLUTION:}}

________________________

-------------

Given :

-------------

\mathsf{ \frac{2 -\sqrt{3} }{2 + \sqrt{3}} = a - b \sqrt{3}}

-------------

To find :

--------------

Value of a and b.

---------------------

Main Solution :

----------------------

Solve the LHS by rationalising it's denominator.

2 - √3 / 2 + √3 = a - b√3

=> 2 - √3 / 2 + √3 × 2 - √3 / 2 - √3

=> ( 2 - √3 )² / (2)² - (√3)²

=> 4 + 3 - 4√3 / 4 - 3

=> 7 - 4√3

On comparing LHS with RHS, we get ;

\mathsf{7 - 4 \sqrt{3} = a - b \sqrt{3}}

Therefore,

Value of a = 7

Value of b = 4

_________________________

Thanks for the question !

BrainlyVirat: Perfect answer
nishitadeka: nice ans
juhiswt175: great job
akku1877: Well defined Answer didu ♥️
BrainlyQueen01: Thanks :)
BrainlyQueen01: Thanks :)
nana336: Sab yahan chuchi dance karta hai
Answered by SmãrtyMohït
139
Here is your solution

\huge\boxed{\red{\bold{Given:-}}}

 \frac{2 - \sqrt{3} }{2 + \sqrt{3} } = a - b \sqrt{3} \\
\underline{\purple{\bold{we\: have\: to\: find\: value\: of\: a\: and\: b\ }}}

Now we rationalise

= \frac{2 - \sqrt{3} }{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ = \frac{(2 - \sqrt{3} ) {}^{2} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} } \\ \\ = \frac{4 + 3 - 2 \times 2 \times \sqrt{3} }{4 - 3} \\ \\ = \frac{7 - 4 \sqrt{3} }{1} \\ \\a - b \sqrt{3} = 7 - 4 \sqrt{3}

The value of a and b

\huge\underline{\pink{\bold{a=7}}}
\huge\underline{\pink{\bold{b=4}}}

hope it helps you

nishantraj42: fantastic answer
hemanthsistla: thanks
nishantraj42: welcome
hemanthsistla: okk
sameerHCl: hlo girls
sameerHCl: hii
juhiswt175: hello
kingutkarsh63: hlo sexy girls
Similar questions