Math, asked by Anonymous, 2 months ago

Rationalisation of denominator
 \frac{4}{3 \sqrt{3}  - 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3} + 2 \sqrt{2}  }

Answers

Answered by MissSolitary
3

 :  \longrightarrow{ \underline{{ \huge{ \mathfrak{R}}} \mathfrak{equired} \:  \:  \:  { \huge{ \mathfrak{A}}} \mathfrak{nswer :-}}}

-----------------------

 \tt{ \: 1) \:  \frac{4}{3 \sqrt{3} - 2 \sqrt{2}  } +  \frac{3}{3 \sqrt{3}  + 2 \sqrt{2}  }  }   \\

-----------------------

Now, take the LCM,

-----------------------

We know that,

(a+b) (a-b) = a² - b²

-----------------------

 :  \longrightarrow { \tt{ \: \frac{4(3 \sqrt{3} + 2 \sqrt{2}) + 3(3 \sqrt{3}  - 2 \sqrt{2})   }{( {3 \sqrt{3}) ^{2}   - (2 \sqrt{2} )}^{2} }  }} \\

We know that,

√3 × √3 = 3

 :  \longrightarrow{ \tt{ \:  \frac{(12\sqrt{3})  - ( {8 \sqrt{2} ) + 9√3 - 2√2} }{27 - 8} }} \\

 :  \longrightarrow{ \tt{ \: \frac{7(27 - 8)}{19} }} \\

 :  \longrightarrow{ \tt{  \:  \frac{21√3 - 10√2}{ \cancel{19}} }} \\

-----------------------

You can also substitute it,

We know that,

√3 = 1.732 ; √2 = 1.414

-----------------------

 :  \longrightarrow{ \tt{  \:  \frac{36.372 - 14.14}{ \cancel{19}} }} \\

 :  \longrightarrow{ \tt{  \:  \frac{22.232}{ \cancel{19}} }} \\

 \boxed{ \blue{ :  \longrightarrow { \tt{ \:1.17\:  \: ..ans }}}}

-----------------------

@MissSolitary ✌️

-----------------------

Answered by StormEyes
12

Solution!!

\sf \dfrac{4}{3\sqrt{3}-2\sqrt{2}}+\dfrac{3}{3 \sqrt{3}+2\sqrt{2}}

Taking the LCM

\sf = \dfrac{4(3\sqrt{3}+2\sqrt{2})+3(3\sqrt{3}-2\sqrt{2})}{(3\sqrt{3}-2\sqrt{2})(3\sqrt{3}+2\sqrt{2})}

Rationalising the denominator using (a + b)(a - b) = a² - b²

\sf = \dfrac{4(3\sqrt{3}+2\sqrt{2})+3(3\sqrt{3}-2\sqrt{2})}{(3\sqrt{3})^{2}-(2\sqrt{2})^{2}}

\sf = \dfrac{4(3\sqrt{3}+2\sqrt{2})+3(3\sqrt{3}-2\sqrt{2})}{9(3)-4(2)}

\sf = \dfrac{4(3\sqrt{3}+2\sqrt{2})+3(3\sqrt{3}-2\sqrt{2})}{19}

Distribute 4 and 3 through the parentheses

\sf = \dfrac{12\sqrt{3}+8\sqrt{2}+9\sqrt{3}-6\sqrt{2}}{19}

Collecting the like term

\boxed{\sf = \dfrac{21\sqrt{3}+2\sqrt{2}}{19}}

Rationalising the denominator:-

In brief, it is the process by which a fraction is simplified so that the denominator is a rational number.

More identities:-

→ (a + b)² = a² + b² + 2ab

→ (a - b)² = a² + b² - 2ab

→ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

→ (a + b)³ = a³ + b³ + 3ab(a + b)

→ (a - b)³ = a³ - b³ - 3ab(a - b)

→ (a + b)(a - b) = a² - b²

Similar questions