Math, asked by Anonymous, 3 months ago

Rationalisation of denominator
 \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }

Answers

Answered by RealSweetie
17

 \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }  \\  =  \frac{ \sqrt{6}( \sqrt{2} -  \sqrt{3})   }{( \sqrt{2} +  \sqrt{3})( \sqrt{2} -  \sqrt{3}  )  }  \\  =  \frac{ \sqrt{12} -  \sqrt{18}  }{( \sqrt{2}) {}^{2} - ( \sqrt{3}) {}^{2}    }  \\  =  \frac{2 \sqrt{3} - 3 \sqrt{2}  }{2 - 3}  \\  =   \frac{ -  \sqrt{2} }{ - 1}  \\  =  \sqrt{2}

Answered by Anonymous
19

Given :

\boxed{\bf \dfrac{ \sqrt{6} }{ \sqrt{2} + \sqrt{3} } }

To Find :

Rationalization of the denominator.

Solution :

\\ \sf=\dfrac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}

Rationalizing the denominator,

\\ \sf=\dfrac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\times\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}

\\ \sf=\dfrac{(\sqrt{6})\times(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})\times(\sqrt{2}-\sqrt{3})}

\\ \sf=\dfrac{\sqrt{6}(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})\times(\sqrt{2}-\sqrt{3})}

Using identity (a + b)(a - b) =(a² - b²) in denominator,

\\ \sf=\dfrac{\sqrt{12}-\sqrt{18}}{(\sqrt{2})^2-(\sqrt{3})^2}

\\ \sf=\dfrac{\sqrt{12}-\sqrt{18}}{2-3}

\\ \sf=\dfrac{\sqrt{12}-\sqrt{18}}{-1}

\\ \sf=\dfrac{-(\sqrt{12}-\sqrt{18})}{1}

\\ \sf=\dfrac{-\sqrt{12}+\sqrt{18}}{1}

\\ \sf=\sqrt{18}-\sqrt{12}

\\ \therefore\boxed{\bf\sqrt{18}-\sqrt{12}.}

The answer is 18 - 12.

Explore More :

• The above question is solved by the method of rationalisation.

• Rationalization is a technique which is generally used to remove the roots which is given in the form of denominators .

• We use rationalisation for proving something like in trigonometry.

• For doing rationalising you always have to multiply the same value but having opposite sign.

Similar questions