Physics, asked by foreverbangtan830, 1 month ago

Rationalisation of the denominator of 1÷(√5+√2) gives:

1/√10
√5 + √2
√5 - √2
(√5 - √2)/3​

Answers

Answered by Ladylaurel
9

Question :-

Rationalisation of denominator of  \sf{\dfrac{1}{\sqrt{5} + \sqrt{2}}} gives:

 \bull \:  \:  \:  \:  \sf{\dfrac{1}{\sqrt{10}}}

 \bull \:  \:  \:  \sf{ \sqrt{5} +  \sqrt{2}}

 \bull \:  \:  \:  \sf{ \sqrt{5} - \sqrt{2}}

 \bull \:  \:  \:  \:  \sf{\dfrac{ \sqrt{5} -  \sqrt{2}}{3}}

Answer:

Option. d is the correct option.

 \sf{\dfrac{ \sqrt{5} -  \sqrt{2}}{3}}

Step-by-step explanation:

To rationalise

  •  \sf{\dfrac{1}{\sqrt{5} + \sqrt{2}}}

 \\

Solution

 \sf{\longrightarrow \: \dfrac{1}{\sqrt{5} + \sqrt{2}}}

 \\

Rationalising with the rationalising factor

[√5 - √2], We get.

 \sf{\longrightarrow \: \dfrac{1}{\sqrt{5} + \sqrt{2}} \times \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}}

 \\

 \sf{\longrightarrow \: \dfrac{ \sqrt{5} - \sqrt{2}}{{(\sqrt{5})}^{2} + ({\sqrt{2})}^{2}}}

 \\

By simplifying, [(√5)² = 5] and [(√2)² = 2], We get.

 \sf{\longrightarrow \: \dfrac{ \sqrt{5} - \sqrt{2}}{5 - 2}}

 \\

 \sf{\longrightarrow \: \dfrac{ \sqrt{5} - \sqrt{2}}{3}}

_________________________

Hence,

 \sf{\dfrac{1}{\sqrt{5} + \sqrt{2}} = \dfrac{ \sqrt{5} - \sqrt{2}}{3}}

Answered by NewGeneEinstein
3

 \\  \tt \longmapsto \:  \frac{1}{ \sqrt{5}  +  \sqrt{2} }  \\  \\  \tt \longmapsto \:  \frac{1( \sqrt{5} -  \sqrt{2}  )}{( \sqrt{5}  +  \sqrt{2})( \sqrt{5} -   \sqrt{2})  }  \\  \\  \tt \longmapsto \:  \frac{ \sqrt{5}  -  \sqrt{2} }{( \sqrt{5}  {)}^{2 }  - ( \sqrt{2} ) {}^{2} }  \\  \\  \tt \longmapsto \:  \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}  \\  \\  \tt \longmapsto \:   \frac{ \sqrt{5} -  \sqrt{2}  }{3}  \\  \\  \therefore \sf \: rationalised \: denominator \: is \:  \frac{ \sqrt{5} -  \sqrt{2}  }{3}

Similar questions