Math, asked by milithegrate, 11 months ago

Rationalisation. Please help!

Attachments:

Answers

Answered by Zaransha
1

 {x}^{2}  = 11 + 2 \sqrt{30}  \\ x =  \sqrt{11 + 2 \sqrt{30} }  \:  \:  \:  \:  \\ x =  \sqrt{ {( \sqrt{5})  }^{2}  +  {( \sqrt{6}) }^{2}  + 2( \sqrt{5})( \sqrt{6})  }  \\  \\  =  \sqrt{ {( \sqrt{5}  +  \sqrt{6} )}^{2} }  \\  =  \sqrt{5}  +  \sqrt{6}


(i) Have already shown the answer for x above.

(ii)
 \frac{1}{x}  =  \frac{1}{ \sqrt{5} +  \sqrt{6}  }
Rationalizing the term,
 \frac{1}{ \sqrt{5} +  \sqrt{6}  } \times  \frac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5} -  \sqrt{6}  }   \\  =  \frac{ \sqrt{5}   -   \sqrt{6} }{5 - 6}  \\  =  \frac{ \sqrt{5}  -  \sqrt{6}  }{ (- 1)}  \\  =  \sqrt{6}  -  \sqrt{5}

(iii) Adding (i) and (ii) will give:
 \sqrt{5}  +  \sqrt{6}  +  \sqrt{6}  -  \sqrt{5}  \\  = 2 \sqrt{6}
(iv) Subtraction (ii) from (i)

 \sqrt{5}  +  \sqrt{6}  - ( \sqrt{6}  -  \sqrt{5} ) \\  =  \sqrt{5}  +  \sqrt{6}  -  \sqrt{6}  +  \sqrt{5}  \\  = 2 \sqrt{5}



Tada!!

all done.
Similar questions