Math, asked by Amarpreet8427, 10 months ago

rationalise 1/3+2√2​

Answers

Answered by Brâiñlynêha
29

\huge\bf{\red{Solution:-}}

Rationalise

\sf\bullet \dfrac{1}{3+2\sqrt{2}}

Rationalize it by denominator

\sf\implies \dfrac{1}{3+2\sqrt{2}}\times \dfrac{(3-2\sqrt{2})}{(3-2\sqrt{2})}\\ \\ \sf\implies \dfrac{3-2\sqrt{2}}{(3){}^{2}-(2\sqrt{2}){}^{2}}\\ \\ \sf\implies \dfrac{3-2\sqrt{2}}{9-8}\\ \\ \sf\implies \dfrac{3-2\sqrt{2}}{1}\\ \\ \sf\implies or\:\:\: 3-2\sqrt{2}

Answered by Anonymous
27

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

❏ Question:-

Rationalise the

\sf{\ \ {\dfrac{1}{3+2\sqrt{2}}}}

❏ Solution:-

\implies\sf{\ \ {\dfrac{1}{3+2\sqrt{2}}}}

\implies\sf{\ \ {\dfrac{1(3-2\sqrt{2})}{(3+2\sqrt{2})(3-2\sqrt{2})}}}

\implies\sf{\ \ {\dfrac{(3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}}}

\implies\sf{\ \ {\dfrac{(3-2\sqrt{2}}{(9-8)}}}

\implies\sf{\ \ {\dfrac{(3-2\sqrt{2}}{(1)}}}

\implies\boxed{\sf{\ \ {(3-2\sqrt{2})}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions