Math, asked by aishu1804, 1 year ago

rationalise 1/root 5+root 6-root 11

Answers

Answered by Muskan1101
32
Here's your answer!!

_____________________________

We have to rationalise ,

 = > \frac{1}{ \sqrt{5} + \sqrt{6} - 11 }

So,

 = > \frac{1}{( \sqrt{5} + \sqrt{6}) - \sqrt{11} } \times \frac{ (\sqrt{5} + \sqrt{6}) + \sqrt{11} }{ (\sqrt{5} + \sqrt{6} )+ \sqrt{11} }



 = > \frac{ \sqrt{5} + \sqrt{6} + \sqrt{11} }{ {( \sqrt{5} + \sqrt{6} ) }^{2} - {( \sqrt{11} )}^{2} }


========================
We know that,
 = > {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2 \times a \times b
========================


 = > \frac{ \sqrt{5} + \sqrt{6} + \sqrt{11} }{5 + 6 + 2 \times \sqrt{5} \times \sqrt{6} - 11 }


 = > \frac{ \sqrt{5} + \sqrt{6} + \sqrt{11} }{11 + 2 \sqrt{30} - 11}


 = > \frac{ \sqrt{5} + \sqrt{6} + \sqrt{11} }{2 \sqrt{30} } (11 \: and \: - 11 \: got \: cancel)


By rationalizing it's denominator,we get:-

 = > \frac{ \sqrt{5} + \sqrt{6} + \sqrt{11} }{2 \sqrt{30} } \times \frac{2 \sqrt{30} }{2 \sqrt{30} }


 = > \frac{2 \sqrt{150} + 2 \sqrt{180} + 2 \sqrt{330} }{4 \times 30}


 = > \frac{ 2\sqrt{150} + 2 \sqrt{180} + 2 \sqrt{330} }{120}


 = > 2( \frac{150 + 180 + 330}{120} )


 = > \frac{150 + 180 + 330}{60}



We can write it as ,


 = > \frac{5 \sqrt{6} + 6 \sqrt{5} + \sqrt{330} }{60}

___________________________

Hope it helps you!! :)

aishu1804: tqsm
Muskan1101: Welcome !! :)
Answered by justin58
8
Here it's clear.hope it gonna help
Attachments:

justin58: sorry iforgot to send
justin58: i mean paste the picture
aishu1804: np
aishu1804: tq
Similar questions