Math, asked by laundiya5531, 10 months ago

Rationalise 3√5+7√2/√45-√48

Answers

Answered by raushan6198
1

Answer:

 \frac{3 \sqrt{5}  +  7 \sqrt{2} }{ \sqrt{45}  -  \sqrt{48} }  \\  =  \frac{3 \sqrt{5}  + 7 \sqrt{2} }{ \sqrt{3 \times 3 \times 5}  -  \sqrt{4 \times 4 \times 3} }  \\  =  \frac{3 \sqrt{5}  + 7 \sqrt{2} }{3 \sqrt{5} - 4 \sqrt{3}  }  \\  =  \frac{3 \sqrt{5} + 7 \sqrt{2}  }{3 \sqrt{5} - 4 \sqrt{3}  }  \times  \frac{3 \sqrt{5} + 4 \sqrt{3}  }{3 \sqrt{5} + 4 \sqrt{3}  }  \\  =  \frac{(3 \sqrt{5} + 7 \sqrt{2} )(3 \sqrt{5}   + 4 \sqrt{3} )}{( {3 \sqrt{5}) }^{2}  -  ({4 \sqrt{3}) }^{2} }  \\  =  \frac{9 \times 5 + 21 \sqrt{10}  + 12 \sqrt{15}  + 28 \sqrt{6} }{9 \times 5  - 4 \times 3}  \\  =   \frac{45 + 21 \sqrt{10} + 12 \sqrt{15}   + 28 \sqrt{6} }{45 - 12}  \\  =   \frac{45 + 21 \sqrt{10}  + 12 \sqrt{15}  + 28 \sqrt{6} }{33}

Similar questions