Math, asked by bvnreddyrtc, 1 month ago

Rationalise(3 - √6) / (6- √3)​

Answers

Answered by Dioretsa
1

 \sf{{\dfrac{3-{\sqrt{6}}}{6-{\sqrt{3}}}}}

multiply  \sf{\bold{{6+{\sqrt{3}}}}} in numerator and denominator .

 \sf{={\dfrac{(3-{\sqrt{6}})(6+{\sqrt{3}})}{(6-{\sqrt{3}})(6+{\sqrt{3}})}}}

 {\boxed{\sf{\bold{\footnotesize{(3-{\sqrt{6}})(6+{\sqrt{3}})= 18+3{\sqrt{3}} - 6{\sqrt{6}} -3{\sqrt{2}}}}}}}

 {\boxed{\sf{\bold{\footnotesize{(6-{\sqrt{3}})(6+{\sqrt{3}}) = 33}}}}}

 \sf{={\dfrac{18+3{\sqrt{3}} - 6 {\sqrt{6}}-3{\sqrt{2}}}{33}}}

 \boxed{\sf{\bold{\footnotesize{factor~{18+3{\sqrt{3}}-6{\sqrt{6}}-3{\sqrt{2}}} ⇒3(6+{\sqrt{3}} - 2{\sqrt{6}} - {\sqrt{2}}}}}}

 \sf{={\dfrac{3(6+{\sqrt{3}} - 2{\sqrt{6}} - {\sqrt{2}})}{33}}}

Cancel the common factor 3

 \sf{\boxed{\boxed{={\dfrac{(6+{\sqrt{3}} - 2{\sqrt{6}} - {\sqrt{2}})}{11}}}}}

Similar questions