Math, asked by BhawyaDivya, 1 month ago

Rationalise 3√7+2√5 upon 3√7-2√5​

Answers

Answered by abhishekrohanjaiswal
1

Answer:

83+12√35/43

Step-by-step explanation:

(3√7+2√5 )/( 3√7-2√5)

=[(3√7+2√5 )/( 3√7-2√5)]×[(3√7+2√5)/(3√7+2√5)]

=(3√7+2√5)^2/(3√7)^2-(2√5)^2

=(3√7)^2 + (2√5)^2 +2(3√7)(2√5)/63-20

=63+20+12√35/43

=83+12√35/43

Answered by Anonymous
14

Answer:

Method used:-

Rationalising denominator

Used Formula:-

\mathtt{(a + b)(a - b) =  {a}^{2} -  {b}^{2}  }

Required Answer:-

\mathtt{ \frac{83 + 12 \sqrt{35} }{43} }

Solution:-

\mathtt{ \frac{ = 3 \sqrt{7}  + 2 \sqrt{5} }{3 \sqrt{7} - 2 \sqrt{5}  } \times  \frac{3 \sqrt{7} + 2 \sqrt{5}  }{3 \sqrt{7} + 2 \sqrt{5}  }  }

\mathtt{ =  \frac{3 \sqrt{7}(3 \sqrt{7}  + 2 \sqrt{5} )  + 2 \sqrt{5}(3 \sqrt{7}  + 2 \sqrt{5)}  }{ {(3 \sqrt{7}) }^{2}  -  {(2 \sqrt{5} )  }^{2}  } }

\mathtt{  = \frac{(3 \sqrt{7)^{2}  }  + 3 \sqrt{7}  \times 2 \sqrt{5} + 2 \sqrt{5} \times 3 \sqrt{7} +  {(2 \sqrt{5} )}^{2}   }{ {(3 \sqrt{7}) }^{2}  -  {(2 \sqrt{5} )}^{2} }  }

\mathtt{ = \frac{63 + 6 \sqrt{35 }  + 6 \sqrt{35}  + 20}{63 - 20} }

\mathtt{  = \frac{63 + 20 + 6 \sqrt{35}  + 6 \sqrt{35} }{43} }

\mathtt{  = \frac{83 + 12 \sqrt{35} }{43} }

Step-by-step explanation:

I hope this helps you mate

Similar questions