Math, asked by Gurleen713, 1 month ago

Rationalise

5+√2/5-√2....​

Answers

Answered by Anonymous
22

Answer:

Question:

  • { \sf{Rationalise  :  \frac{5 +  \sqrt{2} }{5 -  \sqrt{2} } }} \\

Solution:

 :  \implies{ \sf{  \frac{5 +  \sqrt{2} }{5 -  \sqrt{2} } }} \\  \\  : { \implies{ \sf{ \frac{5 +  \sqrt{2} }{5 -  \sqrt{2} } \times  \frac{5 +  \sqrt{2} }{5 +  \sqrt{2} }  }}} \\  \\ : { \implies{ \sf{  \frac{ {(5 +  \sqrt{2} )}^{2} }{ {(5)}^{2} -  {( \sqrt{2} )}^{2}  }  }}} \\  \\ : { \implies{ \sf{ \frac{ {(5)}^{2} +  { \sqrt{(2}) }^{2}   + 2(5)( \sqrt{2} )}{25 - 2} }}} \\  \\ : { \implies{ \sf{ \frac{25 + 2 + 10 \sqrt{2} }{23} }}} \\  \\ : { \implies{ \sf{ \frac{27 + 10 \sqrt{2} }{23} }}}

{ \therefore{ \sf{ \frac{5 +  \sqrt{2} }{5 -  \sqrt{2} }  =  \frac{27 + 10 \sqrt{2} }{23} }}} \\

Answered by BrainlyBAKA
1

 { \sf{ \frac{5 + \sqrt{2} }{5 - \sqrt{2} } }} \\ \\  { { \sf{ \frac{5 + \sqrt{2} }{5 - \sqrt{2} } \times \frac{5 + \sqrt{2} }{5 + \sqrt{2} } }}} \\ \\  { { \sf{ \frac{ {(5 + \sqrt{2} )}^{2} }{ {(5)}^{2} - {( \sqrt{2} )}^{2} } }}} \\ \\ { { \sf{ \frac{ {(5)}^{2} + { \sqrt{(2}) }^{2} + 2(5)( \sqrt{2} )}{25 - 2} }}} \\ \\  { { \sf{ \frac{25 + 2 + 10 \sqrt{2} }{23} }}} \\ \\  { { \sf{ \frac{27 + 10 \sqrt{2} }{23} }}}

Similar questions