Math, asked by diya1121, 3 months ago

rationalise 6/3+2root2 + 5/3-2root2​

Answers

Answered by Flaunt
47

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{6}{3 + 2 \sqrt{2} }  +  \dfrac{5}{3 - 2 \sqrt{2} }

Solving separately a part.

\sf \longmapsto \dfrac{6}{3 + 2 \sqrt{2} }  \times  \dfrac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }

Identity used here :-

(a+b)(a-b)=a²-b²

\sf \longmapsto \dfrac{6(3 - 2 \sqrt{2} )}{ {(3)}^{2}  -  {(2 \sqrt{2}) }^{2} }

\sf \longmapsto \dfrac{6(3 - 2 \sqrt{2} )}{9 - 6}  =  \dfrac{6(3 - 2 \sqrt{2}) }{3}

\sf  \bold{ = 2(3 - 2 \sqrt{2} )}

\sf \longmapsto \dfrac{5}{3 - 2 \sqrt{2} }  \times  \dfrac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }

\sf \longmapsto \dfrac{5(3 + 2 \sqrt{2} )}{ {3)}^{2}  -  {(2 \sqrt{2} )}^{2} }  =  \dfrac{5(3 + 2 \sqrt{2} )}{9 - 8}

\sf \bold{= 5(3 + 2 \sqrt{2} )}

Add both the values :

\sf \longmapsto2(3 - 2 \sqrt{2} ) + 5(3 + 2 \sqrt{2} )

\sf \longmapsto6 - 4 \sqrt{2}  + 15 + 10 \sqrt{2}

\sf \longmapsto \bold{ \red{21 + 6 \sqrt{2} }}

Extra information=>

Rationalising means removing root values from its denominators and shifts towards numerator.

Method for rationalising:-

  1. Multiply with the opposite sign values of denominator to both numerator and denominator.

Similar questions