Math, asked by jahanf240, 1 month ago

rationalise 7/ 2√3+√5​

Answers

Answered by Anonymous
46

\large\sf\underline{Given\::}

  • Rationalise = \sf\:\frac{7}{2\sqrt{3} + \sqrt{5}}

\large\sf\underline{To\::}

  • Rationalise the given expression

\large\sf\underline{Solution\::}

In order to rationalise an expression we need to multiply and divide the expression by the conjugate of its denominator.

Here :

  • Numerator = 7

  • Denominator = \sf\:2\sqrt{3} + \sqrt{5}

So conjugate of \sf\:2\sqrt{3} + \sqrt{5} = \sf\:2\sqrt{3}  - \sqrt{5}

Now let's multiply and divide the given expression by \sf\:2\sqrt{3} - \sqrt{5}

\sf\to\:\frac{7}{2\sqrt{3} + \sqrt{5}} \times \frac{2 \sqrt{3} - \sqrt{5}}{2\sqrt{3} - \sqrt{5}}

\sf\to\:\frac{7(2 \sqrt{3} - \sqrt{5})}{(2\sqrt{3} + \sqrt{5}) (2 \sqrt{3} - \sqrt{5})}

  • Multiplying the terms in numerator and applying an identity in the denominator

Identity used in denominator :

\small{\underline{\boxed{\mathrm\orange{(a+b)(a-b)=a^{2}-b^{2}}}}}

Here :

  • a = 23

  • b = 5

\sf\to\:\frac{14 \sqrt{3} -7 \sqrt{5}}{(2\sqrt{3}) ^{2}- (\sqrt{5})^{2}}

  • In the denominator root symbol and square gets cancelled out and 2 comes out in its square form

\sf\to\:\frac{14 \sqrt{3} -7 \sqrt{5}}{(4 \times 3)- 5}

  • Doing simple calculations in denominator

\sf\to\:\frac{14 \sqrt{3} -7 \sqrt{5}}{12- 5}

\sf\to\:\frac{14 \sqrt{3} -7 \sqrt{5}}{7}

  • Taking 7 as common in numerator

\sf\to\:\frac{7(2 \sqrt{3} - \sqrt{5})}{7}

  • Cancelling 7 from numerator as well as denominator

\sf\to\:\frac{\cancel{7}(2 \sqrt{3} - \sqrt{5})}{\cancel{7}}

\sf\to\:\frac{(2 \sqrt{3} - \sqrt{5})}{1}

\large{\mathfrak\red{\to\:2 \sqrt{3} - \sqrt{5}}}

==================

!! Hope it helps !!

Answered by hshahi1972
0

 \sqrt[2]{3}  - 5

Similar questions