Math, asked by manoj1234585, 11 months ago

Rationalise (7+3√2)/(7-3√2) and add it to √7-√2.

Answers

Answered by imsapna005
1

Answer:

7²-(3√2)²

= 49. - 18

31 and then add √7-√2

Answered by gautamkumar118
2

Step-by-step explanation:

 \blue{=  \frac{(7 + 3 \sqrt{2}) }{(7  - 3 \sqrt{2})}} \\ \blue{ =  \frac{(7 + 3 \sqrt{2})}{(7  -  3 \sqrt{2})}  \times  \frac{(7 + 3 \sqrt{2})}{(7 + 3 \sqrt{2})}}  \\  \blue{=  \frac{(7 + 3 \sqrt{2}) \times (7 + 3 \sqrt{2})}{ {7}^{2}  - (3 \sqrt{2})^{2}  }}   \:  \:  \:  \: \bold\pink{\mathtt{(using \:( a - b)(a + b))}} \\ \blue{ =  \frac{7(7 + 3 \sqrt{2}) + 3 \sqrt{2}(7 + 3 \sqrt{2}) }{49 - 9 \times 2}}  \\  \blue{=  \frac{49 + 21 \sqrt{2}  + 21 \sqrt{2}  + 3 \times 3 \times 2}{49 - 18}} \\  \blue{=  \frac{49 + 18 + 42 \sqrt{2} }{31}}  \\  \blue{=  \frac{67 + 42 \sqrt{2} }{31}} \\  \\  \\  \\  \\ \bold{Now, \: we \: add \:  \sqrt{7}  -  \sqrt{2}} \\  \\ \frac{67 + 42 \sqrt{2} }{31}  +  \sqrt{7}  -  \sqrt{2}  =  \frac{67 + 42 \sqrt{2} + 31 \sqrt{7} - 31 \sqrt{2}   }{31}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\boxed{  =  \frac{67 + 11 \sqrt{2 } + 31 \sqrt{7}  }{31}}}

\red{\mathtt{I\: hope \: you \: like \: it \: and \: mark \: brainliest \:answer} }

Similar questions