rationalise and simplify √3-√2/√3+√2
Answers
◐ Given :–
\begin{gathered} \\ \end{gathered}
Dimensions of a brick = 25 cm × 15 cm × 8 cm.
Dimensions of the wall = 10 m × 4 m × 5 m.
\dfrac{1}{10}101 of its volume is occupied by mortar.
\begin{gathered} \\ \end{gathered}
◐ To Find :–
\begin{gathered} \\ \end{gathered}
The number of bricks required to build the wall.
\begin{gathered} \\ \end{gathered}
◐ Solution :–
\begin{gathered} \\ \end{gathered}
» We would first find the volume of a brick.
» Then, we would find the volume of the wall.
» Since {\dfrac{1}{10}}^{th}101th of the volume is occupied by the mortar, so, we would find the remaining volume.
» After finding the remaining volume, we would divide it by the volume of a brick so as to get the number of bricks.
\begin{gathered} \\ \end{gathered}
◆ Finding the Volume of a Brick :
\begin{gathered} \\ \end{gathered}
We have :
Length = 25 cm
Breadth = 15 cm
Height = 8 cm
We know -
\odot\;\boxed{\sf Volume_{\:cuboid}=Length\times Breadth \times Height }⊙Volumecuboid=Length×Breadth×Height
So,
\begin{gathered} \colon \rarr \sf \: volume _{ \: brick} = 25 \times 15 \times 8 \: {cm}^{3} \\ \\ \colon \dashrightarrow \boxed{ \pink{\frak{volume _{ \: brick} = 3000 \: {cm}^{3} }}}\end{gathered}:→volumebrick=25×15×8cm3:⇢volumebrick=3000cm3
\begin{gathered} \\ \end{gathered}
◆ Finding the Volume of the Wall :
\begin{gathered} \\ \end{gathered}
We have :
Length = 10 m = 1000 cm
Breadth = 4 m = 400 cm
Height = 5 m = 500 cm
So,
\begin{gathered} \colon \rarr \sf \: volume _{ \: wall} = 1000 \times 400 \times 500 \: {cm}^{3} \\ \\ \colon \dashrightarrow \boxed{ \frak{ \pink{volume _{ \: wall} = 200000000 \: {cm}^{3}}}} \end{gathered}:→volumewall=1000×400×500cm3:⇢volumewall=200000000cm3
\begin{gathered} \\ \end{gathered}
◆ Finding Remaining Volume :
\begin{gathered} \\ \end{gathered}
We have :
Volume of the wall = 20,00,00,000 cm³
\dfrac{1}{10}101 of the volume is occupied by mortar.
So,
\begin{gathered} \colon \rarr \sf \: remaining \: volume = volume _{ \: wall} - \frac{1}{10} \times volume _{ \: wall} \\ \\ \colon \rarr \sf \: remaining \: volume = \frac{9}{10} \times volume _{ \: wall} \\ \\ \colon \sf \rarr \: remaining \: volume = \frac{9}{ \cancel{10}} \times 20000000 \cancel0 \: {cm}^{3} \\ \\ \colon \rarr \boxed{ \pink{ \frak{remaining \: volume = 180000000 \: {cm}^{3}}}} \end{gathered}:→remainingvolume=volumewall−101×volumewall:→remainingvolume=109×volumewall:→remainingvolume=109×200000000cm3:→remainingvolume=1
Step-by-step explanation: