Math, asked by Anonymous, 1 month ago

rationalise denominator and simplify
b^2/(√,a^2+b^2)+a​

Answers

Answered by mathdude500
2

Concept Used :-

Method of Rationalization :-

This method of Rationalization is used to remove the radicals from denominator and it means multiply and divide by conjugate of denominator.

Let's solve the problem now!!!

\large\underline{\bf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{ {b}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}} + a }

\rm  =  \:  \: \:\dfrac{ {b}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}} + a } \times \dfrac{ \sqrt{ {a}^{2} +  {b}^{2}}  - a}{\sqrt{ {a}^{2} +  {b}^{2}}  - a}

\rm  =  \:  \: \dfrac{ {b}^{2}(\sqrt{ {a}^{2} +  {b}^{2}}  - a)}{ {( \sqrt{ {a}^{2} +  {b}^{2}})}^{2}  -  {a}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \red{\boxed{ \bf \:  \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}

\rm  =  \:  \: \dfrac{ {b}^{2}(\sqrt{ {a}^{2} +  {b}^{2}}  - a)}{ \cancel {a}^{2}  +  {b}^{2}  - \cancel  {a}^{2} }

\rm  =  \:  \: \dfrac{ \cancel {b}^{2}(\sqrt{ {a}^{2} +  {b}^{2}}  - a)}{ \cancel {b}^{2} }

\rm  =  \:  \:  \sqrt{ {a}^{2} +  {b}^{2}}  - a

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Answered by student3837
1

Answer:

Concept Used :-

Method of Rationalization :-

This method of Rationalization is used to remove the radicals from denominator and it means multiply and divide by conjugate of denominator.

Let's solve the problem now!!!

\large\underline{\bf{Solution-}}

Given that,

⟼a2+b2+ab2</p><p></p><p>\rm = \: \: \:\dfrac{ {b}^{2} }{ \sqrt{ {a}^{2} + {b}^{2}} + a } \times \dfrac{ \sqrt{ {a}^{2} + {b}^{2}} - a}{\sqrt{ {a}^{2} + {b}^{2}} - a}=a2+b2+ab2×a2+b2−aa2+b2−a</p><p></p><p>\rm = \: \: \dfrac{ {b}^{2}(\sqrt{ {a}^{2} + {b}^{2}} - a)}{ {( \sqrt{ {a}^{2} + {b}^{2}})}^{2} - {a}^{2} }=(a2+b2)2−a2b2(a2+b2−a)</p><p></p><p>

Similar questions