Math, asked by golu295, 1 year ago

rationalise denominator of 1+root2/2-root2

Answers

Answered by Swaroop1234
74

 \frac{1 +  \sqrt{2} }{2 -  \sqrt{2} }  =   \frac{(1 +  \sqrt{2})(2 +  \sqrt{2} ) }{(2 -  \sqrt{2} )(2 +  \sqrt{2}) }  \\  =  \frac{2 +  \sqrt{2 } + 2 \sqrt{2}  + 2 }{ {2}^{2} -  { \sqrt{2} }^{2}  }  =  \frac{4  + 3 \sqrt{2} }{4 - 2}  \\  =  \frac{4 + 3 \sqrt{2} }{2}
Answered by jitumahi435
13

Given:

\dfrac{1+\sqrt{2}}{2-\sqrt{2}}

To rationalize denominator of \dfrac{1+\sqrt{2}}{2-\sqrt{2}}.

Solution:

\dfrac{1+\sqrt{2}}{2-\sqrt{2}}

= \dfrac{1+\sqrt{2}}{\sqrt{2}.\sqrt{2}-\sqrt{2}}

= \dfrac{\sqrt{2}+1}{\sqrt{2}(\sqrt{2}-1)}

Rationalising numerator and denominator, we get

= \dfrac{1}{\sqrt{2}} \dfrac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}

= \dfrac{1}{\sqrt{2}} \dfrac{(\sqrt{2}+1)^2}{(\sqrt{2}^2-1^2)}

Using the algebraic identity,

(a + b)(a - b) = a^{2} -b^{2} and

(a + b)^2 = a^{2} +b^{2} + 2ab

= \dfrac{1}{\sqrt{2}} \dfrac{2+1+2\sqrt{2}}{(2-1)}

= \dfrac{3+2\sqrt{2}}{\sqrt{2}}

Thus, the rationalize denominator of \dfrac{1+\sqrt{2}}{2-\sqrt{2}} = \dfrac{3+2\sqrt{2}}{\sqrt{2}}

Similar questions