Math, asked by ruhi4468, 1 year ago

rationalise denominator of
 \frac{4}{2 +  \sqrt{3} +  \sqrt{7}  }

Answers

Answered by Swarup1998
7
Solution :

Now, \displaystyle\frac{4}{2+\sqrt{2}+\sqrt{3}}

To rationalize the denominator, we multiply both the numerator and the denominator by \displaystyle(2+\sqrt{3}-\sqrt{7})

\displaystyle=\frac{4(2+\sqrt{3}-\sqrt{7})}{\{(2+\sqrt{3})+\sqrt{7}\}\{(2+\sqrt{3})-\sqrt{7}\}}

\displaystyle=\frac{4(2+\sqrt{3}-\sqrt{7})}{(2+\sqrt{3})^{2}-(\sqrt{7})^{2}}

\displaystyle=\frac{4(2+\sqrt{3}-\sqrt{7})}{4+4\sqrt{3}+3-7}

\displaystyle=\frac{4(2+\sqrt{3}-\sqrt{7})}{4\sqrt{3}}

\displaystyle=\frac{2+\sqrt{3}-\sqrt{7}}{\sqrt{3}}

Again, to rationalize the denominator, we multiply both the numerator and the denominator by \displaystyle(\sqrt{3})

\displaystyle=\frac{\sqrt{3}(2+\sqrt{3}-\sqrt{7})}{\sqrt{3}\times \sqrt{3}}

\displaystyle=\frac{\sqrt{3}(2+\sqrt{3}-\sqrt{7})}{3}

\displaystyle\to \boxed{\frac{4}{2+\sqrt{2}+\sqrt{3}}=\frac{\sqrt{3}(2+\sqrt{3}-\sqrt{7})}{3}}

which is the required rationalisation.

Swarup1998: :-)
ruhi4468: thanks
ruhi4468: thanks
Swarup1998: :-)
Similar questions