Rationalise dinometon 3-2√2/3+2√2
नेशनल लाइटर डिनॉमिनेटर 3 - 2 अंडर रूट 2 अपऑन 3 प्लस टू अंडर रूट 2
Answers
Given :-
We need to rationalise the denominator :
So, we'll multiply by both the numerator and denominator.
So, it becomes –
• Identify which is used in numerator :
• Identify which is used in denominator :
Hence, after rationalisation, we get that
Given :-
\implies{ \sf{ \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} } }}⟹
3+2
2
3−2
2
We need to rationalise the denominator :
So, we'll multiply { \sf{3 - 2 \sqrt{2} }}3−2
2
by both the numerator and denominator.
So, it becomes –
\implies{ \sf{ \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} } \times \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } }}⟹
3+2
2
3−2
2
×
3−2
2
3−2
2
• Identify which is used in numerator :
{ \sf{(a - b) ^{2} = a^{2} - 2ab + b^{2} }}(a−b)
2
=a
2
−2ab+b
2
• Identify which is used in denominator :
{ \sf{(a + b) \: (a - b) = a ^{2} - b^{2} }}(a+b)(a−b)=a
2
−b
2
\implies{ \sf{ \frac{(3 - 2 \sqrt{2} )^{2} } {(3)^{2} - (2 \sqrt{2} )^{2} } }}⟹
(3)
2
−(2
2
)
2
(3−2
2
)
2
\implies{ \sf{ \frac{(3) ^{2} - 2 \times 3 \times 2 \sqrt{2} + (2 \sqrt{2})^{2} }{9 - 2^{2} \times 2 } }}⟹
9−2
2
×2
(3)
2
−2×3×2
2
+(2
2
)
2
\implies{ \sf{ \frac{(3) ^{2} - 2 \times 3 \times 2 \sqrt{2} + (2 \sqrt{2})^{2} }{9 - 8 } }}⟹
9−8
(3)
2
−2×3×2
2
+(2
2
)
2
\implies{ \sf{ \frac{9 - 12 \sqrt{2} + 8 }{1}}}⟹
1
9−12
2
+8
\implies{ \sf{17 - 12 \sqrt{2} }}⟹17−12
2
Hence, after rationalisation, we get that { \sf{7 - 12 \sqrt{2}}}7−12
2