Math, asked by sweetyg848, 10 months ago

Rationalise: i) 5

√7- √5

ii) If a= 7- 4 √3 then find the value of a + 1/a​

Answers

Answered by tahseen619
21

ii) 14

Step-by-step explanation:

Given:

a = 7 - 4√3

To find:

a +  \dfrac{1}{a}

Solution:

a = 7 - 4 \sqrt{3}  \\  \\ \frac{1}{a}  = 7 - 4 \sqrt{3}  \\ \\ [\text{Rationalizing the denominator}] \\ \\ = \frac{(7 + 4 \sqrt{3} )}{(7 - 4 \sqrt{3})(7 + 4 \sqrt{3})}  \\  \\  =  \frac{7  + 4 \sqrt{3} }{ {(7)}^{2} -  {(4 \sqrt{3}) }^{2}}  \\  \\  =  \frac{7 + 4 \sqrt{3} }{49 - 16 \times 3}  \\  \\  =  \frac{7 + 4 \sqrt{3} }{49 - 48}  \\  \\  =  \frac{7 + 4 \sqrt{3} }{1}  \\  \\  =  7 + 4 \sqrt{3}

Now,

a +  \frac{1}{a}  = 7  - 4 \sqrt{3}  + 7  +  4 \sqrt{3}  \\  \\  = 7 + 7 \\  \\  = 14

The required answer is 14.

Answered by binayprasad525
13

Answer:

(i) 5(root7 + root5) / 24

(ii) 14

Step-by-step explanation:

Please go through the process and answer .

Thank you!

Attachments:
Similar questions