Math, asked by xdaiv, 1 month ago

rationalise root 6/root 2+ root 3​

Answers

Answered by debarunghosh
0

Answer:

3√2-2√3 this is the required answer

Answered by Yuseong
3

To rationalise the denominator of:

 \longrightarrow \sf { \dfrac{\sqrt{6}}{\sqrt{2} + \sqrt{3}} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To rationalise the denominator of the given fraction, we need to multiply the the rationalising factor of the denominator with both the numerator and the denominator of the given fraction.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Here,

 \longrightarrow \sf {Denominator = (\sqrt{2} + \sqrt{3} )}

Rationalising factor of   \sf { (\sqrt{2} + \sqrt{3} )} is   \sf { (\sqrt{2} - \sqrt{3} )} . So, we'll multiply   \sf { (\sqrt{2} - \sqrt{3} )} with both the numerator and the denominator.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{\sqrt{6}}{\sqrt{2} + \sqrt{3}} \times \dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} } \\ \\

 \longrightarrow \sf { \dfrac{\sqrt{6} (\sqrt{2} - \sqrt{3}) }{(\sqrt{2} + \sqrt{3})(\sqrt{2} + \sqrt{3})} } \\ \\

By using identity,

  • (a + b)(a - b) = a² - b²

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{\sqrt{6} (\sqrt{2}) - \sqrt{6}( \sqrt{3}) }{(\sqrt{2})^2 -(\sqrt{3})^2 } } \\ \\

 \longrightarrow \sf { \dfrac{\sqrt{12} - \sqrt{18}}{2 -3 } } \\ \\

 \longrightarrow \sf { \dfrac{\sqrt{12} - \sqrt{18}}{-1 } } \\ \\

 \longrightarrow \sf { \dfrac{\sqrt{12} - \sqrt{18}}{-1 } \times \dfrac{-1}{-1} } \\ \\

 \longrightarrow \sf { \dfrac{-1(\sqrt{12} - \sqrt{18})}{(-1)^2 } } \\ \\

 \longrightarrow \sf { \dfrac{ -\sqrt{12} + \sqrt{18}}{1 } } \\ \\

 \longrightarrow \sf {  -\sqrt{12} + \sqrt{18} } \\ \\

 \longrightarrow \boxed{\sf {  -2\sqrt{3} +3 \sqrt{2} }} \\ \\

Hence, rationalised.

⠀⠀⠀⠀___________________________

More Identities :

• (√a)² = a

• √a√b = √ab

• √a/√b = √a/b

• (√a + √b)(√a - √b) = a - b

• (a + √b)(a - √b) = a² - b

• (√a ± √b)² = a ± 2√ab + b

• (√a + √b)(√c + √d) = √ac + √ad + √bc + √bd

Similar questions