Math, asked by RILEY09, 1 year ago

rationalise the above no​

Attachments:

Answers

Answered by LovelyG
1

Answer :

 \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \times \frac{3 - 2 \sqrt{2} }{3  -  2 \sqrt{2} }  \\  \\  \frac{(3 - 2 \sqrt{2}) {}^{2}  }{(3) {}^{2} - (2 \sqrt{2}) {}^{2}}  \\  \\  \frac{(3) {}^{2} - 2 \times 3 \times 2 \sqrt{2} + (2 \sqrt{2}) {}^{2} }{9 - 8}  \\  \\  \frac{9 - 12 \sqrt{2}  + 8}{1}  \\  \\  \boxed{ \red{ \sf 17 - 12 \sqrt{2}}}

_______________________


RILEY09: ur right tq
RILEY09: ✌✌
LovelyG: Welcome :)
Answered by dna63
1

 \frac{3 -  2\sqrt{2} }{3 + 2 \sqrt{2} }  \\  = \frac{3 -  2\sqrt{2} }{3 + 2 \sqrt{2} } \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  =  \frac{(3 - 2 \sqrt{2}  )^{2} }{9 - 8}  \\  =  \frac{9 - 12 \sqrt{2}  + 8}{1} \\   = 17 - 12 \sqrt{2}  \: ans

Hope it helps you.. plz mark it as Brainliest answer.. thanks


LovelyG: 9 + 8 - 12√2 = 17-12√2
dna63: Oo,,, sorry
dna63: I improve it
LovelyG: Ok
RILEY09: tq
Similar questions