Math, asked by gurleensangha, 10 months ago

rationalise the denomenator of 3-2√2/3+2√2

Answers

Answered by Anonymous
29

\huge\underline\mathtt{Given}

\sf \frac{3-2\sqrt{2}}{3+2\sqrt{2}}

Rationalize the denominator

\huge\underline\mathtt{Solution}

\implies\sf \Large\frac{3-2\sqrt{2}}{3+2\sqrt{2}}

\implies\sf \Large\frac{3-2\sqrt{2}}{3+2\sqrt{2}}\times\frac{3-2\sqrt{2}}{3-2\sqrt{2}}

Applying both identity (a-b)² = a²+b²-2ab

or a²- b² = (a+b)(a-b)

\implies\sf \Large\frac{(3-2\sqrt{2})^{2}}{(3)^2-(2\sqrt{2})^{2}}

\implies\sf \Large\frac{(3)^2+(2\sqrt{2})^{2}-2\times{3}\times{2\sqrt{2}}}{9-8}

\implies\sf \Large\frac{9+8-12\sqrt{2}}{1}

\implies\sf 17-12\sqrt{2}

Note :

Some important identities

  • (a+b)² = a²+b²+2ab
  • (a-b)² = a²+b²-2ab
  • a²-b² = (a+b)(a-b)
  • (a+b)³ = a³+b³+3ab(a+b)
  • (a-b)³ = a³-b³-3ab(a-b)
  • a³-b³ = (a-b)(a²+ab+b²)
  • a³+b³ = (a+b)(a²-ab+b²)
Answered by tahseen619
2

Answer:

17 - 12√2

Step by step explanation:

To do:

Rationalise the denomenator

Solution:

 \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \frac{(3 - 2 \sqrt{2} )(3 -  2\sqrt{2}) }{(3 + 2 \sqrt{2} )(3 - 2 \sqrt{2}) }

I multiply the denominator by the conjugate surds to make it rational.

 \frac{ {(3 - 2 \sqrt{2}) }^{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }  \\  \\  \frac{ {(3)}^{2}  + (2 { \sqrt{2}) }^{2}   - 2.3.2 \sqrt{2} }{9 - 8}  \\  \\  \frac{9 + 8 - 12 \sqrt{2} }{1}  \\  \\ 17 - 12 \sqrt{2}

Hence, the required answer is 17 - 12√2 .

Formula Used

(a - b)² = a² + b² - 2ab

(a² - b²) = (a - b)(a + b)

Similar questions