Math, asked by jayan1006, 4 months ago

rationalise the denomiator of 5+√3/5-√3​

Answers

Answered by Anonymous
5

Solution:-

We have

 \rm \implies \:  \dfrac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

To find rationalization the denominator

Now take

 \implies \dfrac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \dfrac{5 +  \sqrt{3} }{5  +  \sqrt{3} }

Using the identities

 \rm \to \: (a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \rm \to \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

Now we get

 \rm \implies \:  \dfrac{(5 +  \sqrt{3} ) {}^{2} }{(5 -  \sqrt{3})(5 +  \sqrt{3}  )}

 \rm \implies \:  \dfrac{ {5}^{2}  + ( \sqrt{3}) {}^{2}  + 2 \times 5 \times  \sqrt{3}  }{5 {}^{2}   - ( \sqrt{3} ) {}^{2}  }

 \rm \implies \dfrac{25 + 3 + 10 \sqrt{3} }{25 - 3}

 \rm \implies \:  \dfrac{28 + 10 \sqrt{3} }{22}

Answer is

\rm \implies \:  \dfrac{28 + 10 \sqrt{3} }{22}

Answered by anindyaadhikari13
6

(Question)

  • Rationalise the denominator of  \sf \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

(Solution)

 \sf \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

 \sf =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }

 \sf =  \frac{ {(5 +  \sqrt{3}) }^{2} }{ {(5)}^{2} -  {( \sqrt{3} )}^{2}  }

 \sf =  \frac{25 + 3 + 2 \times 5 \times  \sqrt{3} }{25 - 3}

 \sf =  \frac{28 + 10 \sqrt{2} }{22}

 \sf =  \frac{14 + 5 \sqrt{2} }{11}

Hence, the rationalises form is  \sf  \frac{14 + 5 \sqrt{2} }{11}

(Identity Used)

➡ (a + b)² = a² + 2ab + b²

➡ (a + b)(a - b) = a² - b²

Similar questions