Math, asked by JayPatil0210, 8 months ago

Rationalise the denominater :
1) 5 / √3 - √5
2) 1 / √7 + √11​

Answers

Answered by stuti2526
0

hope it helps you.. pls mark me as brainliest

Attachments:
Answered by Anonymous
1

Answer:

(i)

 =  \frac{-5 \sqrt{3} - 5 \sqrt{5}  }{2}

(ii)

  = \frac{- \sqrt{7}   +  \sqrt{11} }{4}

Step-by-step explanation:

(i)

 \frac{5}{ \sqrt{3} -  \sqrt{5}  }  =  \frac{5( \sqrt{3} +  \sqrt{5} ) }{( \sqrt{3}  -  \sqrt{5})( \sqrt{3} +  \sqrt{5})   }

 \frac{5 \sqrt{3} + 5 \sqrt{5}  }{( \sqrt{3} )^{2}  - ( \sqrt{5})^{2}  }  =  \frac{5 \sqrt{3} + 5 \sqrt{5} }{3 - 5}

 =  \frac{-5 \sqrt{3} - 5 \sqrt{5}  }{2}

(ii)

 \frac{1}{ \sqrt{7}  +  \sqrt{11} }  =  \frac{1( \sqrt{7} -  \sqrt{11})  }{( \sqrt{7} -  \sqrt{11})( \sqrt{7}  +  \sqrt{11} ) }

 \frac{ \sqrt{7} -  \sqrt{11} }{( \sqrt{7}) ^{2} - ( \sqrt{11})^{2}  }  =  \frac{ \sqrt{7}   -   \sqrt{11} }{7 - 11}

  = \frac{- \sqrt{7}   +   \sqrt{11} }{4}

Similar questions