Math, asked by nishavimal81, 1 year ago

Rationalise the denominater:

2-root5/ 2+ root5

Answers

Answered by Divyaalia
5
hey \: mate \: here \: is \: your \: answer...

_____________________________

 \frac{2 - \sqrt{5} }{2 + \sqrt{5} } = \frac{2 - \sqrt{5} }{2 + \sqrt{5} } \times \frac{2 - \sqrt{5} }{2 - \sqrt{5} }

 \: \: \: \: \: \: \: \: \: \: \: = \frac{(2 - \sqrt{5} ) {}^{2} }{(2) {}^{2} - ( \sqrt{5} {)}^{2} }

 \: \: \: \: \: \: \: \: \: \: \: = \frac{(2) {}^{2} + ( \sqrt{5} {)}^{2} - 2 \times 2 \times \sqrt{5} }{4 - 5}

 \: \: \: \: \: \: \: \: \: \: \: = \frac{4 + 5 - 4 \sqrt{5} }{ - 1}

 \: \: \: \: \: \: \: \: \: \: \: = \frac{ 9- 4 \sqrt{5} }{ - 1}

 \: \: \: \: \: \: \: \: \: \: \: = \frac{-9 + 4 \sqrt{5} }{1}

 \: \: \: \: \: \: \: \: \: \: \: = -9 + 4 \sqrt{5}

______________________________

hope \: it \: helps.....

Anonymous: your answer is not correct
nishavimal81: Sorry but this is not the correct and by the way thanks
nishavimal81: Actually that ans is -9+4 root5
nishavimal81: Thank you
Answered by Anonymous
5
hope it will help you
Attachments:
Similar questions