Math, asked by pushpapaveen, 1 month ago

rationalise the denominater 3 √8 -5√6 by 2√8+ 3√6​

Answers

Answered by IntrovertLeo
8

Given:

The expression -

\bf \dashrightarrow \: \dfrac{ 3\sqrt{8}-5\sqrt{6} }{ 2\sqrt{8} + 3\sqrt{6} }

What To Find:

We have to -

  • Rationalise the denominator.

Solution:

  • Finding the rationalising factor of the denominator.

Here the rationalising factor is -

\sf \implies 2\sqrt{8} - 3\sqrt{6}

  • Solving the expression by multiplying with the rationalising factor.

Multiply the expression,

\sf \implies \dfrac{ 3\sqrt{8} - 5\sqrt{6} }{ 2\sqrt{8} + 3\sqrt{6} } \times \dfrac{ 2\sqrt{8} - 3\sqrt{6} }{ 2\sqrt{8} - 3\sqrt{6} }

Take them as common,

\sf \implies \dfrac{ 3\sqrt{8} - 5\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6} }{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

  • Solving the numerator.

\sf \implies \dfrac{ 3\sqrt{8}( 2\sqrt{8} - 3\sqrt{6} ) - 5\sqrt{6} ( 2\sqrt{8} - 3\sqrt{6} ) }{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

Solving the first brackets,

\sf \implies \dfrac{ 48  - 9\sqrt{48} - 5\sqrt{6} ( 2\sqrt{8} - 3\sqrt{6} ) }{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

Solving the second brackets,

\sf \implies \dfrac{ 48  - 9\sqrt{48} - 10\sqrt{48} + 90 }{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

Rearrange the terms,

\sf \implies \dfrac{ 48 + 90  - 9\sqrt{48} - 10\sqrt{48}}{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

Solve the like terms,

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

  • Solving the denominator.

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ 2\sqrt{8} + 3\sqrt{6} \times 2\sqrt{8} - 3\sqrt{6}}

Using the identity - (a - b) (a + b) = a² - b²

Where -

  • a = 2√8
  • b = 3√6

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ (2\sqrt{8})^2 - (3\sqrt{6})^2}

Solve the first brackets,

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ (2 \times 2 \times \sqrt{8} \times \sqrt{8}) - (3\sqrt{6})^2}

Multiply the numbers in the first brackets,

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ 32 - (3\sqrt{6})^2}

Solve the second brackets,

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ 32 - (3 \times 3 \times \sqrt{6} \times \sqrt{6})}

Multiply the numbers in the second brackets,

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ 32 - 54}

Subtract the numbers,

\sf \implies \dfrac{ 138  - 19\sqrt{48}}{ - 22}

Also written as,

\sf \implies - \dfrac{ 138  - 19\sqrt{48}}{ 22}

Final Answer:

∴ Hence, the answer is \sf - \dfrac{ 138  - 19\sqrt{48}}{ 22}.

Similar questions