Math, asked by hk482627, 10 months ago

rationalise the denomination (a) 1/2√5 b) 1/√7-√5​

Answers

Answered by aryan1234243
4

Step-by-step explanation:

by multiplying it's conjugate u get urs answer perfectly

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

Rationalise the denominator :

\rm{(a)  \dfrac{1}{2 \sqrt{5}}}

\rm{(b)  \: \dfrac{1}{\sqrt{7} -\sqrt{5}}}

Answer:

  \star \sf \frac{1}{2 \sqrt{5} }

 \implies \sf \:  \frac{1}{2 \sqrt{5} }  \times   \frac{ \sqrt{5} }{ \sqrt{5} }

 \implies \sf \:  \frac{ \sqrt{5} }{2 \times 5}

 \implies \boxed{ \bf{ \pink{ \frac{ \sqrt{5} }{10} } \: is \: the \: answer}}

 \star \sf \:  \frac{1}{ \sqrt{7}  -  \sqrt{5} }

 \implies \sf \:  \frac{1}{ \sqrt{7} -  \sqrt{5}  }  \times  \frac{ \sqrt{7}  +  \sqrt{5}  }{ \sqrt{7} +  \sqrt{5}  }

 \implies \sf \:  \frac{ \sqrt{7}  +  \sqrt{5} }{7 - 5}

 \implies \sf \:  \frac{ \sqrt{7}  +  \sqrt{5} }{2}

 \implies \boxed{ \pink{ \bf{ \frac{ \sqrt{7}  +  \sqrt{5} }{2} }} \sf \: is \: the \: answer}

Similar questions