Rationalise the denomination of 5/√3-√5
Answers
Answered by
1
Step-by-step explanation:
Solution:
\dfrac{5}{\sqrt{3} -\sqrt{5} }3−55
Rationalize the denominator
=\dfrac{5}{\sqrt{3} -\sqrt{5} } \times \dfrac{\sqrt{3} +\sqrt{5} }{\sqrt{3} +\sqrt{5} }=3−55×3+53+5
apply Distributive property and use (a + b)(a - b) = a² - b²
= \dfrac{5\sqrt{3} +5\sqrt{5} }{(\sqrt{3})^2 -(\sqrt{5})^2 }=(3)2−(5)253+55
(√a)² = a
= \dfrac{5\sqrt{3} +5\sqrt{5} }{3 -5 }=3−553+55
= \dfrac{5\sqrt{3} +5\sqrt{5} }{-2 }=−253+55
= -\dfrac{5\sqrt{3}}{2 }- \dfrac{ 5\sqrt{5} }{2 }=−253−255
= -\dfrac{5 }{2 }\left( \sqrt{3} + \sqrt{5}\right)=−25(3+5)
\dfrac{5}{\sqrt{3} -\sqrt{5} }3−55 = -\dfrac{5 }{2 }\left( \sqrt{3} + \sqrt{5}\right)=−25(3+5)
Answered by
1
Answer:
this the answer
Step-by-step explanation:
thank you
Attachments:
Similar questions