Math, asked by Saratchandragarnayak, 3 months ago

Rationalise the denomination of 5/√3-√5​

Answers

Answered by royarpita639
1

Step-by-step explanation:

hope this helps you and look the answer once

Attachments:
Answered by s02371joshuaprince47
1

Answer:

Step-by-step explanation:

\dfrac{5}{\sqrt{3} -\sqrt{5} }3−55

Rationalize the denominator

=\dfrac{5}{\sqrt{3} -\sqrt{5} } \times \dfrac{\sqrt{3} +\sqrt{5} }{\sqrt{3} +\sqrt{5} }=3−55×3+53+5

apply Distributive property and use (a + b)(a - b) = a² - b²

= \dfrac{5\sqrt{3} +5\sqrt{5} }{(\sqrt{3})^2 -(\sqrt{5})^2 }=(3)2−(5)253+55

(√a)² = a

= \dfrac{5\sqrt{3} +5\sqrt{5} }{3 -5 }=3−553+55

= \dfrac{5\sqrt{3} +5\sqrt{5} }{-2 }=−253+55

= -\dfrac{5\sqrt{3}}{2 }- \dfrac{ 5\sqrt{5} }{2 }=−253−255

= -\dfrac{5 }{2 }\left( \sqrt{3} + \sqrt{5}\right)=−25(3+5)

\dfrac{5}{\sqrt{3} -\sqrt{5} }3−55 = -\dfrac{5 }{2 }\left( \sqrt{3} + \sqrt{5}\right)=−25(3+5)

Similar questions