Math, asked by harry582, 10 months ago

Rationalise the denominator 1/(5+√2)​

Answers

Answered by sethrollins13
21

✯✯ QUESTION ✯✯

Rationalise the Denominator..

\dfrac{1}{(5+\sqrt{2}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

✰✰ ANSWER ✰✰

\dfrac{1}{(5+\sqrt{2}}

⇝\dfrac{1}{5+\sqrt{2}}\times\dfrac{5-\sqrt{2}}{5-\sqrt{2}}

⇝\dfrac{5-\sqrt{2}}{a^2-b^2}

⇝\dfrac{5-\sqrt{2}}{(5)^2-(\sqrt{2)}^2}

⇝\dfrac{5-\sqrt{2}}{25-2}

\large{\boxed{\bold{\bold{\green{\sf{Answer:.\dfrac{5-\sqrt{2}}{23}}}}}}}

Answered by Delta13
3

Question:

Rationalise the denominator

 \frac{1}{5 +  \sqrt{2} }

Solution:

{ \sf {We \:  will  \: multiply  \: the \:  numerator  \: and \:  denominator  \: with }} \\  \: (5 -  \sqrt{2} )

 =  &gt;  \frac{1 \times</u></strong><strong><u> </u></strong><strong><u> (5 -  \sqrt{2} )}{5 +  \sqrt{2}  \times (5 -  \sqrt{2} )}  \\  \\  =  &gt;  \frac{5 -  \sqrt{2} }{ {5}^{2} - ( \sqrt{2} ) {}^{2} }  \:  \: ({ \:  \:{a {}^{2}  -  {b}^{2}} = (a - b)(a - b) } \: ) \\  \\  =  &gt;  \frac{5 -  \sqrt{2} }{25 - 2}  \\  \\  =  &gt;  \frac{5 -  \sqrt{2} }{23}

Similar questions