Math, asked by extremegaming401, 2 months ago

rationalise the denominator 1/5+√6​

Answers

Answered by Yuseong
3

To rationalise the denominator of :

 \longrightarrow \sf { \dfrac{1}{5+ \sqrt{6} } }

Answer :

 \longrightarrow \sf { \dfrac{5-\sqrt{6}}{19 } }

Solution :

Given fraction,

 \longrightarrow \sf { \dfrac{1}{5+ \sqrt{6} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We are asked to rationalise the denominator of this fraction.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

In order to rationalise the denominator of any fraction, we need to multiply the the rationalising factor of the denominator with both the numerator and the denominator of the given fraction.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Here,

 \longrightarrow \sf{ Denominator = 5+ \sqrt{6} }

Rationalising factor of (a + b) is (a – b), therefore rationalising factor of   \sf{ (5+ \sqrt{6} )} is   \sf{ (5- \sqrt{6} )} . So, we'll multiply   \sf{ (5- \sqrt{6} )} with both numerator and denominator of the given fraction.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{1}{5+ \sqrt{6} } \times \dfrac{5- \sqrt{6}}{5- \sqrt{6}} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{1(5- \sqrt{6})}{(5+ \sqrt{6})(5- \sqrt{6}) } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using identity,

  •  \bf { (a+b)(a-b) = a^2 - b^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{5- \sqrt{6} }{(5)^2 - (\sqrt{6})^2 } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow \sf { \dfrac{5- \sqrt{6} }{25- 6 } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow\boxed{ \sf { \dfrac{5- \sqrt{6} }{19}} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence, rationalised!

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

More Information :

• (√a)² = a

• √a√b = √ab

• √a/√b = √a/b

• (√a + √b)(√a - √b) = a - b

• (a + √b)(a - √b) = a² - b

• (√a ± √b)² = a ± 2√ab + b

• (√a + √b)(√c + √d) = √ac + √ad + √bc + √bd

Similar questions